
DS-PAW Manual

2023 HZWtech

2025-09-26

Table of Contents:

i

ii

DS-PAW Manual

Table of Contents: 1

DS-PAW Manual

2 Table of Contents:

1

Software Introduction

DS-PAW is a first-principles density functional computation program within the Device Studio platform, using
plane waves as the basis set and employing the projected augmented wave (PAW) method to construct pseudopotentials.
This program can be widely applied in the field of materials science to conduct computational research on materials
such as metals, semiconductors, insulators, surfaces, magnetic, non-magnetic, and lithium-ion battery materials; Can
accurately predict the electronic distribution of materials; capable of performing calculations such as atomic geometric
structure optimization and other functions. This program is stable in performance and has undergone internal testing
on millions of cases on Intel and domestic Huawei chips, including various functions and parallel efficiency.

1.1 Command Description

1.1.1 List command list
• -lic

• -info

• -example

• -ipp

• -mpi

• -mpiargs

• -pob

1.1.2 detail command description
*Command Name: -lic

*Usage: -lic is used to generate a serial number. Execute the command DS-PAW -lic in the DS-PAW installation
directory to obtain the LicenseNumber.txt file, which is used for license application.

3

DS-PAW Manual

*Command Name: -info

*Usage: -info is used to view software copyright information, execute command: DS-PAW -info

*Command Name: -example

*Usage: -example is used to quickly perform a single calculation, which can check if DS-PAW is installed cor-
rectly. Execute the command: DS-PAW -example

*Command Name: -ipp

*Usage: -ipp is used to view the DS-PAW pseudopotential data information, including the cutoff energy, valence
electron number, etc. Execute the command: DS-PAW -ipp

*Command Name: -mpi xxx

*Usage: -mpi is used to specify the location of the mpi execution program, such as: -mpi mpirun

*Command Name: -mpiargs xxx

*Usage: -mpiargs is used to specify MPI runtime arguments, such as -mpiargs -np 16

*Command Name: -pob

*Usage: -pob is used to reasonably allocate the number of cores for parallel computing to speed up the run, short
for parallel over band, and can be added to the submission command. DS-PAW cannot enable pob in some functional
calculations, and will issue a warning and turn off pob in this case

1.2 run program running

1.2.1 submit command to submit execution
Set environment variables:

export PATH={DS-PAW INSTALLPATH}/bin:$PATH

Serial execution:

DS-PAW input.in

Parallel execution:

DS-PAW -mpi mpirun -mpiargs "-np 16" input.in -pob

1.2.2 Submit the script to run
If using a queuing system (such as PBS, Slurm, etc.) to submit tasks, as long as the corresponding .pbs or .slurm

scripts are configured, you can submit tasks using qsub xx.pbs or sbatch xx.slurm.

4 1. Software Introduction

2

Quickstart

This chapter will introduce the basic usage of various functions of DS-PAW, including: Structure Relaxation
Calculation, Self-Consistent Calculation, Band (Projected Band) Calculation, Density of States (Projected Den-
sity of States) Calculation, Potential Function Calculation, Electron Localization Density Calculation, Partial
Charge Density Calculation, Hybrid Functional Calculation, Van der Waals Correction Calculation, Dipole
Correction Calculation, DFT+U Calculation, Background Charge Calculation, Optical Properties Calculation,
Frequency Calculation, Elastic Constants Calculation, Transition State Calculation, Phonon Spectrum Calcu-
lation, Spin-Orbit Coupling Calculation, Molecular Dynamics Simulation, External Electric Field Calculation,
Ferroelectric Calculation, Bader Charge Analysis, Band Unfolding Calculation, Dielectric Constant Calcula-
tion, Piezoelectric Tensor Calculation, Fixed Basis Relaxation Calculation, Phonon Thermodynamic Properties
Calculation, Solid State NEB Calculation, Solvation Energy Calculation, Fixed Potential Calculation, Wannier
Interpolated Band Calculation; The parameters of the DS-PAW software can be roughly classified into the following
categories: parameters related to the physical structure, parameters related to the calculated properties, parameters
related to the calculation accuracy, and parameters related to convergence. Most basic parameters have default values.
This chapter introduces a selection of parameters. For the complete parameter list and details, please refer to Parameters
Explanation.

2.1 relax structure calculation
In Density Functional Theory (DFT), structural relaxation refers to changing the initial structures cell and atomic

positions to optimize and obtain a local minimum of the total energy. By performing structural relaxation calculations,
the forces on each atom can be reduced, leading to a more stable structure (to some extent, the stability of the structure
can be verified by calculating the phonon spectrum or frequencies). In general, structures built using modeling software
often have large atomic forces. Moreover, even structures optimized by other DFT software may not necessarily have
the minimum atomic forces in a different DFT calculation software. Therefore, a structural relaxation calculation is
necessary before calculating the specific properties of a structure.

2.1.1 Si atom structure relaxation input file
The input file contains the parameter file relax.in and the structure file structure.as, with relax.in as follows:

5

DS-PAW Manual

1 # task type
2 task = relax
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 2

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [10, 10, 10]
13 cal.cutoffFactor = 1.5
14

15 #relax related
16 relax.max = 60
17 relax.freedom = atom
18 relax.convergenceType = force
19 relax.convergence = 0.05
20 relax.methods = CG
21

22 io.wave = false
23 io.charge = false

The relax.in file can be roughly divided into four sections of parameters:

The first part specifies the calculation type, controlled by the task parameter:

• – task: Specifies the calculation type. This calculation is for relaxation, i.e., structure relaxation.

The second part specifies system-related parameters, which start with sys., and generally relate to the sys-
tems structure, functional, magnetism, and symmetry:

• sys.structure: Specifies the structure file of the system. DS-PAW supports structure file formats of .as and
.h5 (early JSON files are supported but users are not recommended to use them, and subsequent DS-PAW releases
will completely discard the JSON format output). The .as file can be generated directly using the Device Studio
software or constructed manually.

• sys.symmetry: Sets whether to use symmetry during the DS-PAW calculation;

• sys.functional: Sets the functional, currently supporting LDA, PBE, and various modified functionals;

• sys.spin : Sets the magnetism of the system. Since Si is non-magnetic, set sys.spin to none;

Part three specifies parameters related to the calculation, which are prefixed with cal.:

• cal.methods: Sets the self-consistent electronic step optimization method, 2 indicates the Residual minimiza-
tion method is used;

• cal.smearing: Specifies the partial occupation method for each wave function, with 1 indicating the use of
Gaussian smearing.

• cal.ksamping: Method for automatically generating the Brillouin zone k-point grid, G represents using the
Gamma centered method.

• cal.kpoints: Set the sampling size of the Brillouin zone k-point grid. The size of the K-point grid generally
needs to be set according to the size of the systems lattice and its periodicity.

Part Four specifies parameters related to structure relaxation, such as the relaxation method, relaxation
type, and relaxation accuracy. Structure relaxation refers to optimizing atomic positions to obtain a structure

6 2. Quickstart

DS-PAW Manual

with a local minimum total energy, also commonly known as ionic step optimization;

• relax.max: Sets the maximum number of ionic steps for structural relaxation;

• relax.freedom: Sets the degrees of freedom for structural relaxation. atom means only relax atomic positions;
volume means only relax lattice volume; all means relax atomic positions, cell shape, and volume;

• relax.convergenceType: Sets the criteria type for structural relaxation convergence, with force indicating
that atomic forces are used as the criterion, and energy as another optional value;

• relax.convergence: Sets the convergence accuracy of atomic forces during structural relaxation.

• relax.methods : Sets the method for structural relaxation, CG represents the conjugate gradient method;

The structure.as file is referenced as follows:

1 Total number of atoms
2 2
3 Lattice
4 0.00 2.75 2.75
5 2.75 0.00 2.75
6 2.75 2.75 0.00
7 Direct
8 Si -0.115000000 -0.125000000 -0.125000000
9 Si 0.125000000 0.125000000 0.125000000

The structure of the structure.as file is fixed, and the corresponding information must be written precisely line by
line.

• The first line is a fixed prompt line.

• The second line is the total number of atoms.

• This line is a fixed prompt line

• Lines four to six contain the unit cell information.

• The seventh line specifies the format of atomic coordinates, with options Direct and Cartesian.

• Atomic coordinate information starts from the eighth line, and each line must begin with the name of the atom
whose coordinates are described.

To demonstrate the structural changes before and after relaxation, this example manually changes the x-coordinate
of the first Si atom from -0.125 to -0.115.

Note

1. To fix atoms, add the Fix_x Fix_y Fix_z tag on line 7, and then add F or T at the corresponding positions
for each atom, where F means not fixed and T means fixed.

1 Direct Fix_x Fix_y Fix_z
2 Si -0.115000000 -0.125000000 -0.125000000 F F F
3 Si 0.125000000 0.125000000 0.125000000 T T T

2.1. relax structure calculation 7

DS-PAW Manual

2.1.2 run program running
After preparing the input files, upload the files relax.in and structure.as to the environment where DS-PAW is

installed. This section will use the Linux environment as an example.

Running the software in a Linux environment without a graphical interface differs significantly from running
programs in Windows. In Linux, you need to execute programs through the command line. Generally, you need to load
the environment variables first. Usually, the necessary environment variables are written to a text file or ~/.bashrc,
and the environment is loaded using the source command. After the environment is loaded, run DS-PAW relax.in for
single-machine calculations. For parallel computing, run DS-PAW -mpi mpirun -mpiargs -n 2 relax.in. -mpi specifies
the name of mpirun. -mpiargs specifies the arguments following mpirun. See Section Software Introduction for a
command introduction. To submit jobs using queuing systems (e.g., PBS, slurm), configure the corresponding .pbs or
.slurm script first, then submit the job using qsub DS-PAW.pbs or sbatch DS-PAW.slurm.

2.1.3 Analysis Results Analysis
Based on the input files mentioned above, after computation, the following output files will be generated: DS-

PAW.log, relax.h5, and latestStructure.as.

• DS-PAW.log: The log file generated after the DS-PAW calculation;

• relax.h5 : The h5 output file corresponding to the relaxation calculation. See section Output File Format Speci-
fication for structural analysis. This h5 file can be read by DS-PAW for continued calculation;

• latestStructure.as: The final structure file in .as format after relaxation, allowing for direct data viewing;

Drag latestStructure.as into Device Studio to view the structure as shown below:

The unit cell information after relaxation can be found in the latestStructure.as file:

1 Total number of atoms
2 2
3 Lattice
4 0.0000000000000000 2.7500000000000000 2.7500000000000000
5 2.7500000000000000 0.0000000000000000 2.7500000000000000
6 2.7500000000000000 2.7500000000000000 0.0000000000000000
7 Direct
8 Si 0.8801735223171917 0.8748246492235915 0.8748246492235915
9 Si 0.1298264776828063 0.1251753507764085 0.1251753507764085

This structural relaxation calculation performed 3 ionic steps. In the final relaxed configuration, the x-coordinate
of the manually moved Si atom was corrected.

8 2. Quickstart

DS-PAW Manual

Note

1. The single-machine DS-PAW execution command is the software name + input file name. If your input
file name is abc.in, simply execute DS-PAW abc.in.

2. The convergence criterion for this relaxation calculation is chosen as atomic force. If energy is to be
used as the convergence criterion, you can set relax.convergenceType = energy.

2.2 SCF Self-Consistent Calculation
Self-consistent calculations yield the charge density and wavefunction files for a specific crystal. The charge

density file is then used for subsequent calculations of electronic structure properties such as band structure and density
of states. It is crucial to note that self-consistent field (SCF) calculations must precede electronic structure calculations
such as band structure and density of states calculations. The charge density obtained from the SCF calculation is
required for subsequent band structure and density of states calculations.

2.2.1 Input File Preparation for Self-Consistent Calculation of Si Atom
The input files include the parameter file scf.in and the structure file structure.as. scf.in is shown below:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 2

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [10, 10, 10]
13 cal.cutoffFactor = 1.5
14 #outputs
15 io.charge = true
16 io.wave = true

scf.in Input Parameters for Self-Consistent Field Calculation:

• task: Sets the calculation type; this calculation is a scf self-consistent field calculation.

• cal.cutoffFactor: Sets the coefficient for cal.cutoff. The cutoff energy used in the calculation is equal to
cal.cutoff * cal.cutoffFactor.

• io.charge: Controls the output of the charge density file.

• io.wave : Controls the switch for outputting the wavefunction file;

The structure.as file is referenced as follows:

1 Total number of atoms
2 2
3 Lattice
4 0.00 2.75 2.75
5 2.75 0.00 2.75

(continues on next page)

2.2. SCF Self-Consistent Calculation 9

DS-PAW Manual

(continued from previous page)

6 2.75 2.75 0.00
7 Direct
8 Si -0.125000000 -0.125000000 -0.125000000
9 Si 0.125000000 0.125000000 0.125000000

A standard self-consistent calculation usually takes the relaxed structure obtained from structural relaxation as the
structural input.

Note

1. To save ELF and potential data in structure relaxation and self-consistent calculations, simply set io.elf
and io.potential to true;

2. To add a background charge to the system during the calculation, you can directly set the
``sys.electron`` parameter, which specifies the total number of valence electrons.

2.2.2 Run the program.
Once you have prepared the input files scf.in and structure.as, upload them to the server and run the DS-PAW scf.in

calculation as described in Structure Relaxation.

2.2.3 Analysis of the calculation results
Based on the above input files, the following output files will be generated after the calculation is completed:

DS-PAW.log, scf.h5, rho.bin, wave.bin, and rho.h5.

• DS-PAW.log : The log file obtained after the DS-PAW calculation, recording the main information such as energy
iteration in the self-consistent calculation;

• scf.h5 : The h5 output file for the self-consistent field (SCF) calculation. See Output File Format Specification
for a structure analysis.

• rho.bin : Binary file of charge density, used for subsequent post-processing calculations;

• rho.h5 : The h5 format file of charge density, which can be easily converted to a format readable by VESTA (see
Auxiliary Tool User Guide) for visualizing the charge density information.

• wave.bin : Binary file of wavefunctions, used for subsequent calculations;

The rho.h5 file can be converted to a format supported by VESTA software via a Python script. See the Auxiliary
Tool User Guide section for details. The processing yields 1D, 2D, and 3D charge density plots, with the 3D plot
expected to look similar to the following:

10 2. Quickstart

DS-PAW Manual

2.3 band structure calculation
There are two common ways to perform band calculations: a two-step approach using task=band and a one-step

approach using task=scf. This section will use the Si system as an example to illustrate the parameter settings for both
methods.

2.3.1 Si band structure calculation input file
2.3.1.1 task = band two-step calculation

The input file contains the parameter files scf.in and band.in, the structure file structure.as. The scf.in settings are
consistent with the self-consistent calculation in the previous section, and the band.in parameters are as follows:

1 # task type
2 task = band
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 cal.iniCharge = ./rho.bin
10 cal.methods = 2
11 cal.smearing = 1
12 cal.cutoffFactor = 1.5
13 cal.totalBands = 12
14

15 #band related
16 band.kpointsLabel= [G,X,W,K,G,L]
17 band.kpointsCoord= [0, 0, 0, 0.5, 0, 0.5, 0.5, 0.25, 0.75, 0.375, 0.375, 0.75, 0, 0, 0,␣

↪→0.5, 0.5, 0.5]
18 band.kpointsNumber= [30, 30, 30, 30, 30]

2.3. band structure calculation 11

DS-PAW Manual

Introduction of input parameters for band.in:

In band calculations, you can generally retain the parameters from sys. and cal. in band.in and then set the specific
parameters for the band structure calculation:

• task: Specifies the calculation type, which is a band structure calculation in this case.

• cal.iniCharge: Sets the path to the charge density file, supporting both absolute and relative paths. Here, ./
refers to the rho.bin file in the current directory.

A new set of band-related parameters has been added for band calculations, and these parameters are only effective
during band calculations:

• band.kpointsLabel: Sets the labels for high-symmetry points during band structure calculation, one band.
kpointsLabel corresponds to one band.kpointsCoord;

• band.kpointsCoord: Set the fractional coordinates of high-symmetry points for band structure calculations,
with each group consisting of three numbers;

• band.kpointsNumber: Sets the number of k-points between every two adjacent high-symmetry points. There
are two ways to set this parameter:

– When the parameter is set as band.kpointsNumber= [30, 30, 30, 30, 30], the number of k-points between
all high symmetry points is 30;

– When band.kpointsNumber= [30] is set, the number of k-points between high symmetry points G and X is
30, and the k-point density is determined accordingly; uniform k-point sampling is then performed between
high symmetry points X and W, W and K, K and G, and G and L. The actual number of k-points can be
found in the parameter printing section of DS-PAW.log.

• band.EfShift: Determines whether to read the EFermi from rho.bin as the EFermi in the band calculation
output. The default is true, which means reading EFermi from rho.bin.

structure.as file is the same as in the self-consistent calculation. (See Section 2.2)

Note

1. When performing two-step calculations, the parameters cal.cutoffFactor and cal.cutoff in scf.in and
band.in must be consistent, otherwise, a mismatch of grid data will occur.

2. cal.iniCharge specifies the path to the charge density file rho.bin generated by the SCF calculation.

2.3.1.2 task = scf: one-step calculation

The input file contains the parameter file scf.in and the structure file structure.as. The parameters for scf.in are as
follows:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 2

10 cal.totalBands = 12
11 cal.smearing = 1
12 cal.ksamping = G

(continues on next page)

12 2. Quickstart

DS-PAW Manual

(continued from previous page)

13 cal.kpoints = [10, 10, 10]
14 cal.cutoffFactor = 1.5
15 #outputs
16 io.charge = true
17 io.wave = true
18 #band related
19 io.band=true
20 band.kpointsLabel= [G,X,W,K,G,L]
21 band.kpointsCoord= [0, 0, 0, 0.5, 0, 0.5, 0.5, 0.25, 0.75, 0.375, 0.375, 0.75, 0, 0, 0,␣

↪→0.5, 0.5, 0.5]
22 band.kpointsNumber= [30, 30, 30, 30, 30]

Note

1. For one-step band calculations, the result file is scf.h5. The band data is stored in the scf.h5 file, which can
be directly processed by the bandplot.py script in Auxiliary Tool User Guide.

2. io.band=true is only effective when task=scf.

3. When io.band is enabled, setting cal.iniCharge = ./rho.bin is no longer needed, and the calculation of
high-symmetry points in k-space will be performed simultaneously during the scf calculation.

4. Two types of k-points need to be specified in the scf.in file: cal.kpoints for self-consistent field (SCF)
calculations and band.kpoints parameters for band structure calculations. Both sets of k-points are
required.

2.3.2 Run the program.
For the two-step calculation example, upload the parameter control files scf.in, band.in, and the structure file

structure.as to the server. Then, execute DS-PAW scf.in and DS-PAW band.in sequentially, as described in the structure
relaxation section.

2.3.3 Analysis of the calculation results.
Based on the input files mentioned above, the calculation will generate output files such as DS-PAW.log, scf.h5,

and band.h5.

• DS-PAW.log: The log file obtained after the DS-PAW band structure calculation, which can be directly read to
get important information such as band gap, VBM, and CBM.

• band.h5 : The h5 output file corresponding to the band calculation; it stores important data such as energy
eigenvalues. The specific data structure is detailed in Output File Format Specification.

You can use python to process the data in band.h5. For detailed operations, see Auxiliary Tool User Guide. The
resulting band structure plot should look like this:

2.3. band structure calculation 13

DS-PAW Manual

Note

1. The band diagrams obtained by the one-step and two-step band calculations are consistent.

2.4 pband Projection of Band Calculation
Projected band structures refer to the decomposition of the energy at each k-point of each band into contributions

from each atom and its orbitals during a band structure calculation.

2.4.1 Si Projected Band Structure Input File
The input files for the projected band structure calculation include the parameter file pw_band.in, the structure

file structure.as, and the binary charge density file rho.bin obtained from the self-consistent calculation. pw_band.in
is shown below:

1 # task type
2 task = band
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

(continues on next page)

14 2. Quickstart

DS-PAW Manual

(continued from previous page)

9 cal.iniCharge = ./rho.bin
10 cal.methods = 2
11 cal.smearing = 1
12 cal.cutoffFactor = 1.5
13 cal.totalBands = 12
14

15 #band related
16 band.kpointsLabel= [G,X,W,K,G,L]
17 band.kpointsCoord= [0, 0, 0, 0.5, 0, 0.5, 0.5, 0.25, 0.75, 0.375, 0.375, 0.75, 0, 0, 0,␣

↪→0.5, 0.5, 0.5]
18 band.kpointsNumber= [30, 30, 30, 30, 30]
19 band.project=true

pw_band.in Input Parameters:

The projected band calculation differs from a regular band calculation in that the band.project parameter is set
in the calculation parameters:

band.project: Controls whether projection calculations are performed in the band structure calculation;

2.4.2 Run the program
After preparing the input files pw_band.in, structure.as, and rho.bin, upload them to the server for execution. Run

DS-PAW pw_band.in following the procedure described in the structural relaxation section.

2.4.3 Analysis Results
Based on the input files mentioned above, after the calculation is completed, output files such as DS-PAW.log and

band.h5 will be generated.

• DS-PAW.log: The log file generated after the DS-PAW band calculation;

• band.h5 : The h5 output file corresponding to the band structure calculation. Projected band data will also be
saved in band.h5. See Output File Format Specification for details on the data structure;

Data processing of band.h5 can be done using python, see Auxiliary Tool User Guide for details. The resulting
band structure plot should look like this:

2.4. pband Projection of Band Calculation 15

DS-PAW Manual

2.5 DOS calculation
Density of states (DOS) calculations can be performed in two ways: a two-step method with task=dos and a one-

step method with task=scf. This section uses Si as an example to illustrate the parameter settings for both methods.

2.5.1 Input file for Density of States (DOS) calculation of a Si system
2.5.1.1 task = dos two-step calculation

The input files include the parameter files scf.in and dos.in, and the structure file structure.as. scf.in is set consis-
tently with the self-consistent calculation, and the parameters in dos.in are as follows:

1 # task type
2 task = dos
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none

(continues on next page)

16 2. Quickstart

DS-PAW Manual

(continued from previous page)

8

9 cal.iniCharge = ./rho.bin
10 cal.methods = 2
11 cal.smearing = 4
12 cal.ksamping = G
13 cal.kpoints = [20, 20, 20]
14 cal.cutoffFactor = 1.5
15

16 #dos related
17 dos.range=[-10, 10]
18 dos.resolution=0.05

dos.in Input Parameters Introduction:

In the DOS calculation, parameters in sys. and cal. can be retained as much as possible in dos.in, then set the
specific parameters for DOS calculation:

• task: Sets the calculation type. For this calculation, its DOS (density of states) calculation.

• cal.iniCharge: Sets the reading path for the charge density, supporting both absolute and relative paths; here,
./ refers to the rho.bin file in the current directory;

• cal.kpoints: Sets the k-point grid density. For DOS calculations, it is recommended to increase the k-points
to about twice the density used in the self-consistent calculation.

A new set of parameters related to the density of states has been added for DOS calculations, and these parameters
are only effective in the DOS calculation:

• dos.range: Sets the energy range for the density of states calculation.

• dos.resolution: Sets the energy interval precision for the density of states calculation. The number of points
for the DOS calculation is the difference between dos.range divided by dos.resolution plus 1.

structure.as file is the same as the self-consistent calculation. (See Section 2.2)

Note

1. When performing a two-step calculation, the parameters `cal.cutoffFactor` and `cal.cutoff` in `scf.in`
and `dos.in` must be consistent; otherwise, grid data mismatch issues will occur.

2.5.1.2 task = scf one-step calculation

The input file includes the parameter file scf.in, the structure file structure.as, and the parameters for scf.in are as
follows:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 2

10 cal.smearing = 4
(continues on next page)

2.5. DOS calculation 17

DS-PAW Manual

(continued from previous page)

11 cal.ksamping = G
12 cal.kpoints = [10, 10, 10]
13 cal.cutoffFactor = 1.5
14 #outputs
15 io.charge = true
16 io.wave = true
17 #dos related
18 io.dos=true
19 dos.range=[-10, 10]
20 dos.resolution=0.05

Note

1. For the one-step DOS calculation, the result file is scf.h5. The DOS data is stored in the scf.h5 file, and you
can directly use the Auxiliary Tool User Guides dosplot.py script to process the scf.h5 file.

2. io.dos=true is only effective when task=scf.

3. When io.dos is enabled, its no longer necessary to set cal.iniCharge = ./rho.bin; the DOS is obtained
through the self-consistent calculation in this case.

2.5.2 run the program
For the two-step calculation as an example, upload the parameter control files scf.in, dos.in, and the structure file

structure.as to the server, and then sequentially run DS-PAW scf.in and DS-PAW dos.in as described in the structure
relaxation section.

2.5.3 Analysis of the calculation results
Based on the input files mentioned above, the calculation will generate output files such as DS-PAW.log, scf.h5,

and dos.h5.

• DS-PAW.log : Log file generated after DS-PAW density of states calculation;

• dos.h5 : The h5 file containing the density of states data. For details on its structure, see the Output File Format
Specification section.

You can process dos.h5 data using python. See the Auxiliary Tool User Guide section for details. The resulting
density of states plot should look like this:

18 2. Quickstart

DS-PAW Manual

2.6 pdos Projected Density of States Calculation
The calculation of projected density of states refers to the process of expanding the density of states at each energy

level during the density of states calculation into contributions from each atom and its orbitals.

2.6.1 Si projected density of states calculation input file
The input files for projected density of states calculations include the parameter file pdos.in, the structure file

structure.as, and the charge density file from the self-consistent calculation rho.bin. The pdos.in file is as follows:

2.6. pdos Projected Density of States Calculation 19

DS-PAW Manual

1 # task type
2 task = dos
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 cal.iniCharge = ./rho.bin
10 cal.methods = 2
11 cal.smearing = 4
12 cal.ksamping = G
13 cal.kpoints = [20, 20, 20]
14 cal.cutoffFactor = 1.5
15

16 #dos related
17 dos.range=[-10, 10]
18 dos.resolution=0.05
19 dos.project = true

Introduction to the input parameters for pdos.in:

The difference between projected density of states and regular density of states lies in the setting of the dos.
project parameter within the calculation parameters:

• dos.project : Controls the switch for projected calculations in the density of states calculation.

2.6.2 Run the program
After preparing the input files pdos.in, structure.as, and rho.bin, upload the files to the server and run DS-PAW

pdos.in as described in the structure relaxation method.

2.6.3 Analysis of the calculation results.
Based on the above input files, the calculation will generate output files such as DS-PAW.log and dos.h5.

• DS-PAW.log : The log file generated after the DS-PAW density of states calculation;

• dos.h5 : The h5 output file corresponding to the density of states calculation; the projected density of states data
is stored in the dos.h5 file. For the specific data structure, see the Output File Format Specification section;

You can process dos.h5 data using python. See Auxiliary Tool User Guide for specific operations. The resulting
projected density of states plot should look like the following:

20 2. Quickstart

DS-PAW Manual

2.7 potential calculation
There are two methods for calculating the potential function: a two-step method using task=potential and a one-

step method using task=scf. This section takes the Si system as an example to introduce the corresponding parameter
settings for both methods.

2.7.1 Input file for Si potential function calculation
2.7.1.1 task = potential two-step calculation

The input files include the parameter file scf.in, potential.in, and the structure file structure.as. scf.in is set up
consistently with the self-consistent calculation, while potential.in is configured as follows:

2.7. potential calculation 21

DS-PAW Manual

1 # task type
2 task = potential
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 cal.iniCharge = ./rho.bin
10 cal.methods = 2
11 cal.smearing = 1
12 cal.ksamping = G
13 cal.kpoints = [10, 10, 10]
14 cal.cutoffFactor = 1.5
15

16 #potential related
17 potential.type=all

Introduction of the input parameters in potential.in:

In the potential calculation, you can retain as many parameters as possible from sys. and cal. in potential.in, and
then set the specific parameters for the potential calculation:

• task: Set the calculation type. This calculation is a potential potential function calculation.

• cal.iniCharge: Sets the path to read the charge density file, supporting both absolute and relative paths. Here,
./ refers to the rho.bin file in the current directory;

New parameters in potential calculation:

• potential.type: Controls the type of potential saved. When all is selected, both the electrostatic potential
(sum of ionic and Hartree potentials) and the local potential (sum of electrostatic and exchange-correlation po-
tentials) will be saved after the potential calculation is completed.

structure.as file as the self-consistent calculation result. (See Section 2.2)

Note

1. When performing two-step calculations, the parameters `cal.cutoffFactor` and `cal.cutoff` in both
`scf.in` and `potential.in` must be consistent; otherwise, a mismatch in the grid data will occur.

2. If the system being calculated requires dipole correction, the user needs to add the parameters
`corr.dipol = true` and `corr.dipolDirection` in both the self-consistent field (SCF) and potential cal-
culation input files. `corr.dipol = true` enables the dipole correction switch, and `corr.dipolDirection`
sets the dipole correction direction; a, b, and c represent the directions along the lattice vectors a, b,
and c, respectively.

3. For a specific example of dipole correction, see the application case: Calculation of Work Function for
Au-Al System.

2.7.1.2 task = scf one-step calculation

The input file contains the parameter file scf.in, the structure file structure.as, and the parameters for scf.in are as
follows:

22 2. Quickstart

DS-PAW Manual

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 2

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [10, 10, 10]
13 cal.cutoffFactor = 1.5
14 #outputs
15 io.charge = true
16 io.wave = true
17 #potential related
18 io.potential = true

Note

1. For the one-step potential calculation, the corresponding result file is scf.h5. In this case, the potential data is
stored in the scf.h5 file, and you can directly call the potential processing script of Auxiliary Tool User Guide
to analyze the scf.h5 file.

2. io.potential=true is only effective when task=scf.

2.7.2 Run the program.
For the two-step calculation as an example, upload the parameter control file scf.in, potential.in, and structure

file structure.as to the server, and then execute DS-PAW scf.in and DS-PAW potential.in sequentially according to the
method described in structure relaxation.

2.7.3 Analysis of the calculation results
Based on the input files mentioned above, the calculation will generate the following output files: DS-PAW.log,

scf.h5, and potential.h5.

• DS-PAW.log : Log file generated after DS-PAW potential calculation.

• potential.h5 : The h5 output file corresponding to the potential calculation, with specific structure detailed in
Output File Format Specification.

You can use a Python script to convert the potential.h5 format to a format supported by VESTA software, or
directly use the script to perform in-plane averaging of the 3D potential function. For specific operations, see the
Auxiliary Tool User Guide section. The processed vacuum direction potential curve is shown below:

2.7. potential calculation 23

DS-PAW Manual

2.8 elf calculation of electronic local density
There are two ways to calculate the electron localization function (ELF): a two-step approach with task=elf and a

one-step approach with task=scf. This section uses a Si system as an example to illustrate the corresponding parameter
settings for both methods.

2.8.1 Si Electronic Localized Function calculation input file
2.8.1.1 task = elf two-step calculation

Input files include parameter files scf.in and ELF.in, and structure file structure.as. scf.in settings are consistent
with self-consistent calculations, while ELF.in settings are as follows:

24 2. Quickstart

DS-PAW Manual

1 # task type
2 task = elf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 cal.iniCharge = ./rho.bin
10 cal.methods = 2
11

12 cal.smearing = 1
13 cal.ksamping = G
14 cal.kpoints = [10, 10, 10]
15 cal.cutoffFactor = 1.5

ELF.in Input Parameter Description:

In ELF calculations, it is recommended to retain the sys. and cal. parameters in ELF.in as much as possible:

• task: Sets the calculation type; this calculation is an ELF calculation.

• cal.iniCharge: Sets the reading path of the charge density file. Both absolute and relative paths are supported.
Here, ./ represents the rho.bin file in the current path;

The structure.as file is the same as that used in the self-consistent calculation (see Section 2.2).

Note

1. For two-step calculations, the parameters `cal.cutoffFactor` and `cal.cutoff` in both `scf.in` and
`ELF.in` must be consistent; otherwise, grid data mismatch will occur.

2. ELF calculation does not support non-collinear calculations.

2.8.1.2 task = scf one-step calculation

The input files include the parameter file scf.in, the structure file structure.as. The scf.in parameters are as follows:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 2

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [10, 10, 10]
13 cal.cutoffFactor = 1.5
14 #outputs
15 io.charge = true
16 io.wave = true

(continues on next page)

2.8. elf calculation of electronic local density 25

DS-PAW Manual

(continued from previous page)

17 #elf related
18 io.elf = true

Note

1. The output file for a single-step calculation of electron localization density is scf.h5. The electron localization
density data is stored in this file and can be directly analyzed using the electron localization density processing
scripts in Auxiliary Tool User Guide.

2. io.elf=true only takes effect when task=scf.

3. ELF calculation does not support non-collinear calculations.

2.8.2 Run the program
For a two-step calculation example, upload the parameter control files scf.in, ELF.in, and the structure file struc-

ture.as to the server. Then, execute DS-PAW scf.in and DS-PAW ELF.in sequentially, as described in the structural
relaxation section.

2.8.3 Analysis Results
Based on the input files above, after the calculation is completed, output files such as DS-PAW.log, scf.h5, and

elf.h5 will be generated.

• DS-PAW.log : Log file generated after the DS-PAW local density calculation.

• elf.h5 : ELF calculation output file in h5 format; details of the structure are described in Output File Format
Specification.

The elf.h5 format can be converted to a format supported by the VESTA software using a python script; see the
Auxiliary Tool User Guide section for details. The resulting 3D electron localization density map should look like this:

26 2. Quickstart

DS-PAW Manual

2.9 pcharge Part Charge Density Calculation
This section will analyze the charge density of specific bands at specified k-points, using graphene as an example.

It details the preparation of partial charge density calculations after self-consistent field calculations, and the subsequent
analysis through plotting.

2.9.1 Input file for partial charge density calculation of graphene
The input files include the parameter file pcharge.in and the structure file structure.as, the charge density file

rho.bin and the wavefunction file wave.bin obtained from self-consistent calculations, and pcharge.in is as follows:

1 # task type
2 task = pcharge
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 cal.methods = 2
10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [9, 9, 1]
13 cal.cutoffFactor = 1.5
14 cal.iniCharge = ./rho.bin
15 cal.iniWave = ./wave.bin
16

17 #pcharge related
18 pcharge.bandIndex = [4,5]
19 pcharge.kpointsIndex = [12]
20 pcharge.sumK= false

pcharge.in input parameters introduction:

In the partial charge density calculation, parameters from sys. and cal. can be retained in pcharge.in as much as
possible, and then the specific parameters for partial charge density calculation can be set:

• task : Sets the calculation type, which is partial charge density calculation in this case;

• cal.iniCharge : Sets the path for reading the charge density file, supporting absolute and relative paths. Here,
./ refers to the rho.bin file in the current directory.

• cal.iniWave : Sets the reading path for the wave function file, supporting both absolute and relative paths.
Here, ./ indicates the wave.bin file under the current path;

• pcharge.bandIndex : Specifies the band indices for charge density analysis. Here, [4,5] indicates that the
charge density of band 4 and band 5 will be analyzed.

• pcharge.kpointsIndex : Sets the K-point index for charge density analysis. Here, [12] indicates that the
K-point index is 12 when analyzing the charge density of two bands.

• pcharge.sumK : Controls whether to sum the band data of all analyzed K-points. Here, false means no summa-
tion.

structure.as file is referenced as follows:

1 Total number of atoms
2 2

(continues on next page)

2.9. pcharge Part Charge Density Calculation 27

DS-PAW Manual

(continued from previous page)

3 Lattice
4 2.46120000 0.00000000 0.00000000
5 -1.23060000 2.13146172 0.00000000
6 0.00000000 0.00000000 6.70900000
7 Cartesian
8 C 0.61530000 0.35524362 3.35450000
9 C 0.61530000 1.77621810 3.35450000

Note

1. Partial charge density calculation is performed in two steps, with the second step requiring reading
the charge density file rho.bin and the wavefunction file wave.bin from the self-consistent calculation.

2.9.2 run program execution
Prepare the input files pcharge.in, structure.as, and the self-consistent calculation results rho.bin and wave.bin,

upload them to the server for execution, and run DS-PAW pcharge.in following the method described in structure
relaxation.

2.9.3 Analysis of the calculation results
Based on the input files described above, the calculation will generate output files such as DS-PAW.log and

pcharge.h5.

• DS-PAW.log : The log file generated after the DS-PAW partial charge density calculation.

• pcharge.h5 : The HDF5 data file after the partial charge density calculation is completed. The charge density
data for two bands is saved in pcharge.h5 at this time. The specific data structure can be found in the Output File
Format Specification section.

You can process the data in pcharge.h5 using python. See Auxiliary Tool User Guide for specific operations. The
charge density plot for band 4 at k-point index 12 should look like this:

28 2. Quickstart

DS-PAW Manual

2.10 hse hybrid functional calculation
This section will demonstrate the calculation of hybrid functional band structures using the direct band structure

calculation method within the DS-PAW code, using the Si system as an example. We will observe the changes in the
band gap after performing hybrid functional calculations.

2.10.1 Si Hybrid Functional Calculation Input File
The input file includes the parameter file ioband.in and the structure file structure.as. The content of ioband.in is

as follows:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.spin = none
7 #scf related
8 cal.methods = 1
9 cal.totalBands = 12

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [5, 5, 5]
13 cal.cutoffFactor = 1.5
14 #band related

(continues on next page)

2.10. hse hybrid functional calculation 29

DS-PAW Manual

(continued from previous page)

15 io.band = true
16 band.kpointsCoord=[0.62500000,0.25000000,0.62500000,0.50000000,0.00000000,0.50000000,0.

↪→00000000,0.00000000,0.00000000,0.50000000,0.00000000,0.50000000,0.50000000,0.25000000,
↪→0.75000000,0.37500000,0.37500000,0.75000000,0.00000000,0.00000000,0.00000000]

17 band.kpointsLabel = [U,X,G,X,W,K,G]
18 band.kpointsNumber = [20,20,20,20,20,20]
19 band.project = false
20 #HSE related
21 sys.hybrid=true
22 sys.hybridType=HSE06
23 #outputs
24 io.charge = true
25 io.wave = true

ioband.in Input Parameters:

In hybrid functional calculations, you can generally preserve the sys. and cal. parameters in ioband.in as much as
possible, and then set the specific parameters for hybrid functional calculations:

• sys.hybrid : Controls the switch for hybrid functional calculations. true indicates the introduction of hybrid
functional calculations;

• sys.hybridType : Sets the type of hybrid functional, which is HSE06 in this case;

structure.as file is the same as in the self-consistent calculation. (See Section 2.2)

Note

1. Unlike regular calculations where the functional type is set using `sys.functional`, hybrid functional
calculations control the hybrid functional type via the `sys.hybridType` parameter.

2. Hybrid functional calculations only support tasks scf and relax. Therefore, band structure calculations
with hybrid functionals can only be performed in a single-shot manner.

3. It is recommended to use damped MD/conjugated gradient methods for electronic self-consistent field
(SCF) calculations with hybrid functionals, corresponding to setting the parameter cal.methods = 4/5.

4. Hybrid functional calculations can also use the block Davidson method for electronic self-consistent
calculations, i.e., cal.methods = 1 in this example. In this case, the scf.mixType parameter will default
to Kerker.

2.10.2 Run the program.
Prepare the input files ioband.in and structure.as and upload them to the server to run. Execute DS-PAW ioband.in

as described in Structure Relaxation.

2.10.3 Analysis of calculation results
After the calculation is completed based on the input files mentioned above, output files such as DS-PAW.log and

scf.h5 will be generated. The method for processing scf.h5 is the same as the band structure calculation method (see
Section 2.3), and the resulting band structure plot should look like the following:

30 2. Quickstart

DS-PAW Manual

The figure shows that the band gap between the valence band and the conduction band increases after performing the
hybrid functional calculation, approximately to 1.2394 eV, while the band gap obtained without the hybrid functional
calculation is approximately 0.6433 eV.

2.10.4 Modifying the hybrid functional Alpha coefficient
The hybrid functional method shown in Section 2.10.1 is HSE06, with a corresponding hybrid functional co-

efficient of sys.hybridAlpha = 0.25. Adjust the sys.hybridAlpha parameter and perform the following two
calculations:

• Modify the parameter in scf.in and band.in: sys.hybridAlpha = 0.20

• Modify the parameter in scf.in and band.in: sys.hybridAlpha = 0.30

Obtain the following band structure comparison:

2.10. hse hybrid functional calculation 31

DS-PAW Manual

Analysis of the figure shows that increasing the sys.hybridAlpha coefficient leads to a further increase in the
band gap. The band gap values of 1.1146, 1.2394, and 1.3665 eV can be read from the DS-PAW.log file when sys.
hybridAlpha is set to 0.20, 0.25, and 0.30, respectively.

2.11 van der Waals Correction Calculation
This section will use the structural relaxation of a graphite system as an example to illustrate how to correctly set

up van der Waals corrections in DS-PAW, and will compare and analyze the results with and without the van der Waals
correction.

2.11.1 Graphite structure relaxation input file
When relaxing graphite, you can choose to correct van der Waals forces using a semi-empirical method or a

functional correction method. The parameter settings for both methods are described below.

32 2. Quickstart

DS-PAW Manual

2.11.1.1 Empirical Correction

The input files include the parameter file relax.in and the structure file structure.as. relax.in is shown below:

1 # task type
2 task = relax
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 1

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [21, 21, 7]
13 cal.cutoff = 600
14 scf.convergence = 1.0e-05
15 #relax related
16 relax.max = 60
17 relax.freedom = all
18 relax.convergence = 0.01
19 relax.methods = CG
20 #vdw related
21 corr.VDW = true
22 corr.VDWType = D3G

relax.in Input Parameters:

In the van der Waals correction calculation, try to keep the parameters of sys. and cal. in relax.in, then set the
parameters specific to the van der Waals correction calculation.

• corr.VDW : Controls the switch for the semi-empirical van der Waals correction, true indicates it is turned on;

• corr.VDWType: Sets the type of van der Waals correction, D3G representing the DFT-D3 method of Grimme;

The structure.as file is referenced as follows:

1 Total number of atoms
2 4
3 Lattice
4 2.46729136 0.00000000 0.00000000
5 -1.23364568 2.13673699 0.00000000
6 0.00000000 0.00000000 7.80307245
7 Cartesian
8 C 0.00000000 0.00000000 1.95076811
9 C 0.00000000 0.00000000 5.85230434

10 C 0.00000000 1.42449201 1.95076811
11 C 1.23364689 0.71224492 5.85230434

Note

1. When correcting van der Waals forces using semi-empirical methods, different types of
exchange-correlation functionals can be selected. The selectable values for sys.functional are
PBE/REVPBE/RPBE/PBESOL.

2.11. van der Waals Correction Calculation 33

DS-PAW Manual

2. DS-PAW supports using semi-empirical methods to correct van der Waals forces while simultaneously
enabling hybrid functional calculations.

2.11.1.2 Functional Correction

The input file corresponding to the functional correction, relax.in, can be structured as follows:

1 # task type
2 task = relax
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.spin = none
7 #scf related
8 cal.methods = 1
9 cal.smearing = 1

10 cal.ksamping = G
11 cal.kpoints = [21, 21, 7]
12 cal.cutoff = 600
13 scf.convergence = 1.0e-05
14 #relax related
15 relax.max = 60
16 relax.freedom = all
17 relax.convergence = 0.01
18 relax.methods = CG
19 #vdw related
20 sys.functional = vdw-optPBE

relax.in Input Parameter Introduction:

In calculations with van der Waals corrections, parameters related to sys. and cal. can generally be kept in the
relax.in file. Subsequently, set the specific parameters for the van der Waals correction calculation.

• sys.functional: Controls the type of functional. When selecting a functional that includes van der Waals
correction, simply set the vdw-series functional parameters. This example uses the vdw-optPBE functional.
Supported functional types are listed in the Parameters Explanation section.

Note

1. From a theoretical perspective, there are two different ways to correct for van der Waals interactions,
corresponding to the parameters corr.VDW = true (semi-empirical correction) and sys.functional =
vdw- (functional correction), respectively.

2.11.2 run the program
For the example of a semi-empirical correction, after preparing the input file, upload the relax.in and structure.as

files to the server and run the DS-PAW relax.in file as described in structure relaxation.

2.11.3 Analysis of calculation results
After the calculation based on the above input file, output files such as DS-PAW.log, relax.h5, and latestStructure.as

will be generated. (Another set of calculations without considering van der Waals corrections is added for comparison.)

34 2. Quickstart

DS-PAW Manual

Drag latestStructure.as into Device Studio to view the structure. The lattice constants after relaxation are
shown in the following table. By comparison, it is found that the value of the lattice vector c obtained from
structural relaxation with the addition of van der Waals correction is closer to the experimental results reported in
:footcite:p:Rgo2015ComparativeSO.

Procedure a (Å) c (Å)
vdw-D3G this work 2.463 6.954
PBE this work 2.464 7.914
Experiment 2.462 6.707

2.12 Optical Property Calculations
There are two ways to perform optical calculations: a two-step approach with task=optical and a one-step approach

with task=scf. This section will use the Si system as an example to illustrate how to calculate optical properties in DS-
PAW and analyze a series of optical properties by plotting them.

2.12.1 Si optical property calculation input file
2.12.1.1 task = optical two-step calculation

The input files contain the parameter file scf.in, optical.in, and the structure file structure.as. The settings in scf.in
are consistent with the self-consistent calculation, and the settings in optical.in are as follows:

optical.in is set as follows:

1 # task type
2 task = optical
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 1

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [12, 12, 12]
13 cal.cutoffFactor = 1.5
14 cal.iniCharge = ./rho.bin
15

16 #optical related
17 optical.grid = 2000
18 optical.sigma = 0.05
19 optical.smearing = 1

In optical calculations, you can retain the parameters of sys. and cal. as much as possible in :guilabel:`optical.in
and then set the parameters specific to optical calculations:

• task : Sets the calculation type, this calculation is task = optical : optical calculation;

• cal.iniCharge : Sets the path to read the charge density file, supporting both absolute and relative paths. Here,
./ indicates the rho.bin file in the current directory;

• optical.grid : Specifies the number of grid points within the energy range for DS-PAW optical property
calculations, in this case, 2000.

2.12. Optical Property Calculations 35

DS-PAW Manual

• optical.sigma: Determines the broadening width when using the broadening algorithm specified by
optical.smearing, which is 0.05 in this example.

• optical.smearing: Specifies the smearing algorithm used for energy broadening in optical calculations, which
is 1 in this case.

2.12.1.2 task = scf one-step calculation

The input file contains the parameter file scf.in and the structure file structure.as. The settings for scf.in are as
follows:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 1

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [12, 12, 12]
13 cal.cutoffFactor = 1.5
14 #optical related
15 io.optical = true

scf.in Input parameters introduction:

In optical property calculations, you can retain as many sys. and cal. parameters as possible in scf.in, and then set
the specific parameters for optical property calculations:

• io.optical: Controls the switch for optical property calculations. When io.optical=true, the system performs
calculations for optical properties;

structure.as file as in self-consistent calculation. (See Section 2.2)

2.12.2 run the program
For the two-step calculation as an example, after preparing the input files, upload the scf.in, optical.in, and struc-

ture.as files to the server and run them. Execute DS-PAW scf.in and optical.in as described in the structure relaxation.

2.12.3 Analysis of calculation results
Based on the input files mentioned above, the calculation will generate output files including DS-PAW.log, scf.h5,

and optical.h5.

• DS-PAW.log : Log file generated after DS-PAW optical properties calculation.

• optical.h5 : The h5 data file after the optical properties calculation is completed. Note that the name of the h5
file is strictly consistent with the task type. For the data structure of the h5 file, please refer to Output File Format
Specification.

You can use python to process the data from optical.h5 or the one-step calculation result scf.h5. For specific
operations, refer to the Auxiliary Tool User Guide section. Processing allows you to obtain curves of the real part of the
dielectric function, the imaginary part of the dielectric function, the absorption coefficient, the extinction coefficient,
the conductivity, the reflectivity, the refractive index, and the energy loss as a function of energy. Taking the absorption
coefficient curve as an example, the resulting curve should look like the following:

36 2. Quickstart

DS-PAW Manual

2.13 Frequency Calculation
This section will use the CO molecule as an example to illustrate how to perform frequency calculations in DS-

PAW.

2.13.1 CO frequency calculation input file
The input file contains the parameter file frequency.in and the structure file structure.as, with frequency.in as

follows:

1 # task type
2 task = frequency
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 2

10 cal.smearing = 1
11 cal.ksamping = MP
12 cal.kpoints = [9, 9, 9]
13 cal.cutoffFactor = 1.5
14 scf.convergence = 1.0e-6
15 #frequency related

(continues on next page)

2.13. Frequency Calculation 37

DS-PAW Manual

(continued from previous page)

16 frequency.dispOrder = 1
17 frequency.dispRange = 0.02
18 #outputs
19 io.charge = false
20 io.wave = false

Introduction to input parameters for frequency.in:

In the frequency calculation, you can retain as many parameters from sys. and cal. as possible in frequency.in,
and then set the parameters specific to the frequency calculation:

• task : Set the calculation type, which is frequency calculation for this run;

• frequency.dispOrder : Sets the atomic vibration mode for frequency calculations. 1 corresponds to the
central difference method, i.e., 2 atomic vibration modes: the displacement of atoms in each Cartesian direction
is ±frequency.dispRange; 2 corresponds to 4 atomic vibration modes: the displacement of atoms in each
Cartesian direction is ±frequency.dispRange and ±2*frequency.dispRange;

• frequency.dispRange : Sets the displacement magnitude of atoms during frequency calculation.

The structure.as file is referenced as follows:

1 Total number of atoms
2 2
3 Lattice
4 8.0 0.0 0.0
5 0.0 8.0 0.0
6 0.0 0.0 8.0
7 Cartesian Fix_x Fix_y Fix_z
8 O 0 0 0 T T F
9 C 0 0 1.143 T T F

Note

1. Increase the convergence accuracy of the self-consistent field (SCF) calculation during frequency cal-
culation. It is recommended to set it to 1.0e-6 or higher.

2. Since C and O atoms are fixed in the x and y directions, they can only move in the z direction.

2.13.2 run program execution
After preparing the input files, upload the :guilabel:`frequency.in and :guilabel:`structure.as files to the server

and run :guilabel:`DS-PAW frequency.in as described in Structure Relaxation.

2.13.3 Analysis of calculation results
Based on the input files mentioned above, the calculation will generate output files including DS-PAW.log, fre-

quency.h5, and frequency.txt.

• DS-PAW.log : The log file generated after the DS-PAW frequency calculation.

• frequency.h5 : The h5 data file after frequency calculation. The frequency data is stored in this file at this time.
For the specific data structure, see the Output File Format Specification section.

• frequency.txt: The txt text file generated after frequency calculation, which writes frequency-related data. This
file contains the same data as frequency.h5, making it easy for users to quickly access the information.

38 2. Quickstart

DS-PAW Manual

The following data can be obtained from frequency.txt:

Frequency THz 2PiTHz cm-1 meV
1 f 63.844168 401.144726 2129.612084 264.038342
2 f/i 0.051335 0.322546 1.712346 0.212304

CO moves only along the z-axis for two atoms, resulting in only two frequencies. Based on the table above,
one vibrational mode has a frequency of approximately 63.8 THz, and the other is a near-zero imaginary frequency.
Generally, imaginary frequencies less than 2 THz can be considered negligible.

2.14 Calculating elastic constants
This section will use the Si system as an example to demonstrate how to perform elastic calculations in DS-PAW.

2.14.1 Si Input file for elastic constant calculation
The input file includes the parameter file elastic.in and the structure file structure.as, with elastic.in as follows:

1 # task type
2 task = elastic
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8 #scf related
9 cal.methods = 1

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [5, 5, 5]
13 cal.cutoffFactor = 1.5
14 scf.convergence = 1.0e-6
15 #frequency related
16 elastic.dispOrder = 1
17 elastic.dispRange = 0.01
18 #outputs
19 io.charge = false
20 io.wave = false

elastic.in Input Parameter Introduction:

In elastic calculations, you can generally preserve the sys. and cal. parameters in elastic.in as much as possible,
and then set the parameters specific to the elastic calculation:

• task : Set the calculation type; this calculation is an elastic calculation.

• elastic.dispOrder : Set the method of atomic vibration for elastic calculations; 1 corresponds to the central
difference method;

• elastic.dispRange : Set the magnitude of atomic displacement for elastic calculations;

2.14. Calculating elastic constants 39

DS-PAW Manual

structure.as The file is referenced as follows:

1 Total number of atoms
2 8
3 Lattice
4 5.43070000 0.00000000 0.00000000
5 0.00000000 5.43070000 0.00000000
6 0.00000000 0.00000000 5.43070000
7 Cartesian
8 Si 0.67883750 0.67883750 0.67883750
9 Si 3.39418750 3.39418750 0.67883750

10 Si 3.39418750 0.67883750 3.39418750
11 Si 0.67883750 3.39418750 3.39418750
12 Si 2.03651250 2.03651250 2.03651250
13 Si 4.75186250 4.75186250 2.03651250
14 Si 4.75186250 2.03651250 4.75186250
15 Si 2.03651250 4.75186250 4.75186250

Note

1. When performing elastic calculations, the convergence accuracy of self-consistent calculations should
be increased. It is recommended to set it to 1.0e-6 or higher.

2. Fixed atoms are not supported in elastic calculations.

2.14.2 run program execution
After preparing the input files, upload the :guilabel:`elastic.in and :guilabel:`structure.as files to the server and

run :guilabel:`DS-PAW elastic.in following the method described in Structure Relaxation.

2.14.3 Analysis of the calculation results.
After the calculation based on the input files mentioned above, the following three files will be generated: DS-

PAW.log, elastic.h5, and elastic.txt.

• DS-PAW.log: Log file generated after the DS-PAW elastic calculation;

• elastic.h5 : h5 data file generated after the elasticity calculation. The elastic modulus is stored in elastic.h5. For
detailed data structure, please refer to Output File Format Specification;

• elastic.txt : A txt text file generated after the elasticity calculation. This file contains elasticity-related data,
consistent with the elastic.h5 file, for easy user access.

The elastic constant matrix obtained from the elastic.txt file is as follows:

Stiffness Elasticity Matrix:

158.7644 62.9858 62.9858 0.0000 -0.0000 0.0000
62.9858 158.7644 62.9858 0.0000 0.0000 0.0000
62.9858 62.9858 158.7644 -0.0000 0.0000 0.0000
0.0000 0.0000 -0.0000 75.8807 -0.0000 0.0000
-0.0000 0.0000 0.0000 -0.0000 75.8807 -0.0000
0.0000 0.0000 0.0000 0.0000 -0.0000 75.8807

Flexibility Elasticity Matrix:

40 2. Quickstart

DS-PAW Manual

0.0081 -0.0023 -0.0023 -0.0000 0.0000 -0.0000
-0.0023 0.0081 -0.0023 -0.0000 -0.0000 0.0000
-0.0023 -0.0023 0.0081 0.0000 -0.0000 0.0000
-0.0000 -0.0000 0.0000 0.0132 0.0000 -0.0000
0.0000 -0.0000 -0.0000 0.0000 0.0132 0.0000
-0.0000 0.0000 0.0000 -0.0000 0.0000 0.0132

Bulk Modulus, Shear Modulus, Youngs Modulus, and Poissons Ratio:

Properties Vogit Reuss Hill
BulkModulus(GPa) 94.9120 94.9120 94.9120
ShearModulus(GPa) 64.6841 61.5016 63.0929
YoungModulus(GPa) 158.1297 151.7315 154.9452
PoissonRatio 0.2223 0.2336 0.2279

The Si system is cubic. This crystal system has three independent matrix elements: C11, C12, and C44, corre-
sponding to 158.7644, 62.9858, and 75.8807 in the table, respectively.

2.15 NEB Transition State Calculation
This section introduces how to perform transition state calculations (CI-NEB) in DS-PAW using the example of

H diffusion on the Pt(100) surface, and how to analyze the results graphically.

2.15.1 Transition state calculation input file Pt

The input files include a parameter file, neb.in, and multiple structure files, structureNo.as. The neb.in file is as
follows:

1 task = neb
2

3 sys.structure = structure.as
4 sys.functional = PBE
5 sys.spin = none
6 sys.symmetry = true
7

8 cal.ksamping = G
9 cal.kpoints = [3,3,1]

10 cal.cutoffFactor = 1.0
11 cal.smearing = 1
12 cal.sigma = 0.05
13

14 neb.freedom = atom
15 neb.springK = 5
16 neb.images = 3
17 neb.iniFin = true
18 neb.method = LBFGS
19 neb.convergence = 0.03
20 neb.stepRange = 0.1
21 neb.max = 60
22

(continues on next page)

2.15. NEB Transition State Calculation 41

DS-PAW Manual

(continued from previous page)

23 io.wave = false
24 io.charge = false

neb.in Input Parameters:

In the transition state calculation, you can try to keep the parameters of sys. and cal. in neb.in, and then set the
parameters specific to the transition state calculation.

• task : Sets the calculation type; in this case, its a NEB transition state calculation.

• neb.stepRange: Sets the step size for structure relaxation in the NEB transition state calculation;

• neb.max : Sets the maximum number of steps for structure relaxation in the NEB calculation;

• neb.iniFin : Controls whether self-consistent calculations are performed for the initial and final structures in
the transition state calculation; true means self-consistent calculations are performed.

• neb.springK : Sets the spring constant K in the transition state calculation;

• neb.images : Set the number of intermediate images in the NEB calculation;

• neb.method : Sets the algorithm used for the transition state calculation;

• neb.convergence : Sets the force convergence criterion for the nudged elastic band (NEB) transition state
calculation;

structure.as is required to provide multiple, and the initial state structure structure00.as is referenced as follows

1 Total number of atoms
2 13
3 Lattice
4 5.60580000 0.00000000 0.00000000
5 0.00000000 5.60580000 0.00000000
6 0.00000000 0.00000000 16.81740000
7 Cartesian Fix_x Fix_y Fix_z
8 H 2.80881670 4.20393628 6.94088012 F F F
9 Pt 1.40145000 1.40145000 1.98192999 T T T

10 Pt 4.20434996 1.40145000 1.98192999 T T T
11 Pt 1.40145000 4.20434996 1.98192999 T T T
12 Pt 4.20434996 4.20434996 1.98192999 T T T
13 Pt 0.00272621 0.00056545 3.91746017 F F F
14 Pt 0.00271751 2.80233938 3.91708172 F F F
15 Pt 2.80568712 -0.00141176 3.91894328 F F F
16 Pt 2.80548220 2.80426217 3.91792247 F F F
17 Pt 1.39865124 1.40124680 5.84694340 F F F
18 Pt 4.21951864 1.40156999 5.84719575 F F F
19 Pt 1.38647954 4.20437926 5.89984296 F F F
20 Pt 4.23154392 4.20414605 5.89983612 F F F

Final state structure: structure04.as referenced as follows.

1 Total number of atoms
2 13
3 Lattice
4 5.60580000 0.00000000 0.00000000
5 0.00000000 5.60580000 0.00000000
6 0.00000000 0.00000000 16.81740000

(continues on next page)

42 2. Quickstart

DS-PAW Manual

(continued from previous page)

7 Cartesian Fix_x Fix_y Fix_z
8 H 1.52157824 2.80289997 6.91583941 F F F
9 Pt 1.40145000 1.40145000 1.98192999 T T T

10 Pt 4.20434997 1.40145000 1.98192999 T T T
11 Pt 1.40145000 4.20434997 1.98192999 T T T
12 Pt 4.20434997 4.20434997 1.98192999 T T T
13 Pt 0.02556963 0.00000000 3.90765450 F F F
14 Pt 0.02708862 2.80290000 3.91082177 F F F
15 Pt 2.83159105 0.00000000 3.91547525 F F F
16 Pt 2.82981856 2.80290000 3.90913282 F F F
17 Pt 1.45998966 1.38039927 5.88134827 F F F
18 Pt 4.25691060 1.38811299 5.84551487 F F F
19 Pt 1.45998966 4.22540069 5.88134827 F F F
20 Pt 4.25691060 4.21768697 5.84551487 F F F

Note

1. Structure relaxation is required for the initial and final states before NEB calculation.

2. The generation of intermediate structures can be done by calling the `neb_interpolate_structures.py`
script in Tutorial for Auxiliary Tools - Transition State Section. After interpolation, the
`neb_visualize.py` script can be called to preview the interpolated structures, and the `calc_dist.py`
script can be called to check if the distances between images are reasonable.

3. For transition state calculations, the structure file structureNo.as needs to be placed in a folder named
No, where the folder number corresponds to the structure file number. A neb.in file should be placed
outside the folders. Run the DS-PAW program in the directory where neb.in is located.

4. The number of cores used when executing the transition state calculation should be set to an integer multiple
of the number of images.

2.15.2 run program execution
Once the input file is ready, upload the neb.in file and folders containing structureNo.as files to the server and run

the DS-PAW neb.in as described in structure relaxation.

2.15.3 Analysis of calculation results
After the calculation is completed based on the input files described above:

The folders containing the initial and final state structures will generate output files such as DS-PAW.log, latest-
Structure00.as, and scf.h5 from the self-consistent field (SCF) calculations.

Intermediate structure structureNo.as folders No (folders containing intermediate structures for transition state
calculations, with the number of intermediate structures determined by the neb.images parameter) will generate output
files such as nebNo.h5 and latestStructureNo.as from the structure optimization.

The outermost directory will generate the files DS-PAW.log and neb.h5, where neb.h5 is a summary of the infor-
mation in the nebNo.h5 files under the No folders.

• DS-PAW.log : Log file obtained after DS-PAW transition state calculation;

• neb.h5 : The h5 data file after the transition state calculation is completed; the reaction coordinates and en-
ergy changes, etc., are saved in neb.h5. For the specific data structure, please refer to the Output File Format
Specification section;

2.15. NEB Transition State Calculation 43

DS-PAW Manual

You can use the python script 8neb_check_results.py to analyze the results of the NEB calculation. The
analysis script should be executed in the complete NEB calculation directory. See the Auxiliary Tool User Guide
section for specific instructions.

Processing yields tables of energies and forces for each NEB configuration:

Image Force (eV/Å) Reaction coordinate (Å) Energy (eV) Delta energy (eV)
00 0.1803 0.0000 -39637.0984 0.0000
01 0.0263 0.5428 -39637.0186 0.0798
02 0.0248 1.0868 -39636.8801 0.2183
03 0.2344 1.5884 -39636.9984 0.1000
04 0.0141 2.0892 -39637.0900 0.0084

The resulting barrier curve effect should look like this:

The energy and force of the 02 image obtained during the relaxation process are shown as follows:

44 2. Quickstart

DS-PAW Manual

Alternatively, you can use the python script neb_movie.py to analyze the trajectory changes in the transition state
search. The generated neb_movie.json file can be opened with Device Studio, and a frame is captured as shown below:

2.15. NEB Transition State Calculation 45

DS-PAW Manual

2.16 Phonon Dispersion Calculation
This section introduces how the DS-PAW code performs phonon calculations and computes phonon band struc-

tures and phonon density of states (DOS). DS-PAW supports two methods for phonon spectrum calculations: the finite
displacement (fd) method and the density functional perturbation theory (DFPT) method. Taking a single MgO system
as an example, this section explains how to calculate phonon bands and DOS using both methods, and analyzes the
phonon band structure and DOS plots.

2.16.1 MgO Phonon Dispersion Calculation Input File
The input files consist of the parameter file phonon.in and the structure file structure.as. The phonon.in file is as

follows:

1 task = phonon
2

3 sys.structure = structure.as
4 sys.functional = PBE
5 sys.spin = none
6

7 cal.methods = 1
8 cal.smearing = 1
9 sys.symmetry = true

10 scf.convergence = 1.0e-07
11 cal.ksamping = G
12 cal.kpoints = [3,3,3]
13 cal.sigma = 0.25
14

15 phonon.type = bandDos
16 phonon.structureSize = [2,2,2]
17 phonon.primitiveUVW = [0.0, 0.5, 0.5, 0.5, 0.0, 0.5, 0.5, 0.5, 0.0]
18 phonon.method = dfpt
19 phonon.qpoints = [41,41,41]
20 phonon.dosRange = [0,20]
21 phonon.qpointsLabel = [G,X,W,G,M]
22 phonon.qpointsCoord = [0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5,␣

↪→0.5, 0.5]
23 phonon.qpointsNumber = 51
24

25 io.charge = false
26 io.wave = false

phonon.in input parameter introduction:

In phonon calculations, you can generally retain the parameters of sys. and cal. in :guilabel:`phonon.in and then
set the specific parameters for phonon calculations:

• task : Sets the calculation type, which is phonon for this calculation;

• phonon.type : Set the type of phonon calculation, bandDos corresponds to calculating phonon band structure
and density of states;

• phonon.structureSize : Set the size of the supercell for phonon calculations;

• phonon.primitiveUVW : Set the coefficients of the primitive cell UVW for phonon band calculations;

• phonon.method : Sets the method for phonon calculations, with dfpt indicating the Density Functional Pertur-
bation Theory method;

46 2. Quickstart

DS-PAW Manual

• phonon.qpoints : Set the q-space grid sampling for phonon calculation to 41*41*41;

• phonon.dosRange : Sets the energy range for phonon density of states calculation to [0, 20];

• phonon.qpointsLabel : Set the labels for high-symmetry points in phonon band calculations;

• phonon.qpointsCoord : Set the coordinates of high-symmetry points for phonon band calculations.

• phonon.qpointsNumber : Set the interval between adjacent high-symmetry points for phonon band calcula-
tions;

The structure.as file is referenced as follows:

1 Total number of atoms
2 8
3 Lattice
4 4.2555564654942897 0.0000000000000000 0.0000000000000000
5 0.0000000000000000 4.2555564654942888 0.0000000000000000
6 0.0000000000000000 0.0000000000000000 4.2555564654942897
7 Direct
8 Mg 0.0000000000000000 0.0000000000000000 0.0000000000000000
9 Mg 0.0000000000000000 0.5000000000000000 0.5000000000000000

10 Mg 0.5000000000000000 0.0000000000000000 0.5000000000000000
11 Mg 0.5000000000000000 0.5000000000000000 0.0000000000000000
12 O 0.5000000000000000 0.5000000000000000 0.5000000000000000
13 O 0.5000000000000000 0.0000000000000000 0.0000000000000000
14 O 0.0000000000000000 0.5000000000000000 0.0000000000000000
15 O 0.0000000000000000 0.0000000000000000 0.5000000000000000

Note

1. When performing phonon calculations, the convergence accuracy of the self-consistent calculation
should be increased; it is recommended to set it to 1.0e-7 or higher.

2. When performing phonon calculations with symmetry enabled, it is recommended to increase the ac-
curacy of symmetry determination appropriately. The parameter sys.symmetryAccuracy can be set to
1.0e-6 or smaller to help obtain accurate calculation results.

3. phonon.iniPhonon can specify the path to read the phonon calculation (phonon.type = phonon) gener-
ated phonon.h5 file, enabling direct calculation of band structures and density of states.

4. phonon.type controls the type of phonon calculation. phonon corresponds to phonon calculation, band
corresponds to phonon band calculation, dos corresponds to phonon density of states calculation,
and bandDos corresponds to simultaneous calculation of phonon band and density of states. When
phonon.type = band/dos/bandDos and no file path is specified for phonon.iniPhonon, the program first
automatically performs the phonon calculation for phonon.type = phonon, and then calculates the
band structure or density of states according to the task.

2.16.2 run program execution
After preparing the input files, upload the phonon.in and structure.as files to the server and run them, executing

DS-PAW phonon.in as described in Structure Relaxation.

2.16. Phonon Dispersion Calculation 47

DS-PAW Manual

2.16.3 Analysis of Calculation Results
Based on the input files mentioned above, the calculation will generate the following output files: DS-PAW.log,

phonon.h5, dfpt.json, and dfpt.as.

• DS-PAW.log : The log file generated after the DS-PAW phonon calculation.

• dfpt.as : Supercell structure file for phonon calculations, and this file is read during phonon calculations.

• dfpt.json : Parameter file for phonon calculations, which is consistent with the information in the phonon.in file.
This file is read when calculating phonons.

• phonon.h5 : The h5 data file after the phonon calculation is completed; the phonon band data is stored in
phonon.h5 at this point, and the specific data structure is detailed in the Output File Format Specification section;

You can use a python script to process the data in phonon.h5. The phonon band structure and density of states
plots obtained after processing should look like (a) and (b) below:

(a)

48 2. Quickstart

DS-PAW Manual

(b)

2.16.4 Analysis of NAC calculation results
The previous section presented the phonon band calculation without considering long-range interactions. To

perform phonon calculations with the non-analytical term correction (nac), you can add the following two parameters
to the phonon.in file shown in the previous section:

1 phonon.dfptEpsilon=true
2 phonon.nac = true

The resulting phonon band structure should look like (c) below:

2.16. Phonon Dispersion Calculation 49

DS-PAW Manual

(c)

2.16.5 fdphonon: Finite Displacement Method for Phonon Calculation
The input file for finite displacement (fd) phonon calculations is as follows. Simply modify the parameter

phonon.method = dfpt to phonon.method = fd. Note that the output files generated by the fd method are different
from those generated by the dfpt method.

1 task = phonon
2

3 sys.structure = structure.as
4 sys.functional = PBE
5 sys.spin = none
6

7 cal.methods = 1
8 cal.smearing = 1
9 sys.symmetry = true

10 scf.convergence = 1.0e-07
11 cal.ksamping = G
12 cal.kpoints = [3,3,3]
13 cal.sigma = 0.25
14

15 phonon.type = bandDos
16 phonon.structureSize = [2,2,2]
17 phonon.primitiveUVW = [0.0, 0.5, 0.5, 0.5, 0.0, 0.5, 0.5, 0.5, 0.0]
18 phonon.method = fd
19 phonon.qpoints = [41,41,41]

(continues on next page)

50 2. Quickstart

DS-PAW Manual

(continued from previous page)

20 phonon.qpointsLabel = [G,X,W,G,M]
21 phonon.qpointsCoord = [0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5,␣

↪→0.5, 0.5]
22 phonon.qpointsNumber = 51
23

24 io.charge = false
25 io.wave = false

For the MgO system, for example, when phonon.structureSize is set to [2,2,2], after the finite difference
(FD) calculation is completed, two files, DS-PAW.log and phonon.h5, will be generated, along with folders 001 and
002. Folder 001 contains the files input.json and disp-001.as, and folder 002 contains input.json and disp-002.as. The
two files in each subfolder are equivalent to the in file (input parameters) and the as file (structure parameters). The
number of generated folders (001, 002,) depends on the symmetry of the system.

Using a python script to process the phonon.h5 file obtained from the finite displacement method calculation,
the resulting band structure and density of states plots are consistent with plots (a) and (b) calculated using the dfpt
method.

Note

1. The calculation of dielectric constant is only possible when phonon.method = dfpt.

2. The switch of phonon.nac is only effective when phonon.method = dfpt and phonon.dfptEpsilon=true

2.17 soc spin-orbit coupling calculation
This section describes how DS-PAW performs spin-orbit coupling calculations. Taking the Bi2Se3 system as an

example, we use a two-step method to calculate and analyze the band structure.

2.17.1 Bi2Se3 Spin-Orbit Coupling Calculation Input File
First, a self-consistent calculation is performed: the input file contains the parameter file soi.in and the structure

file structure.as, and soi.in is as follows:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = false
6 sys.functional = PBE
7 #scf related
8 cal.methods = 2
9 cal.smearing = 1

10 cal.ksamping = G
11 cal.kpoints = [7, 7, 7]
12 cal.cutoffFactor = 1.5
13 #soi related
14 sys.spin= non-collinear
15 sys.soi = true
16 #outputs
17 io.charge = true
18 io.wave = false

2.17. soc spin-orbit coupling calculation 51

DS-PAW Manual

soi.in Input Parameter Description:

In spin-orbit coupling calculations, you can generally retain the parameters from sys. and cal. in the :guil-
abel:`soi.in file and then configure the specific parameters for the spin-orbit coupling calculation:

• sys.spin : Sets the spin type of the system; non-collinear means non-collinear spin.

• sys.soi : Controls whether to consider spin-orbit coupling effect; this parameter is effective when sys.spin=non-
collinear;

The following describes the structure.as file:

1 Total number of atoms
2 5
3 Lattice
4 -2.069 -3.583614 0.000000
5 2.069 -3.583614 0.000000
6 0.000 2.389075 9.546667
7 Direct
8 Bi 0.3990 0.3990 0.6970
9 Bi 0.6010 0.6010 0.3030

10 Se 0.0000 0.0000 0.5000
11 Se 0.2060 0.2060 0.1180
12 Se 0.7940 0.7940 0.8820

Input file for band structure calculation: soiband.in, content as follows

1 # task type
2 task = band
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 #scf related
8 cal.methods = 2
9 cal.smearing = 1

10 cal.ksamping = G
11 cal.kpoints = [7, 7, 7]
12 cal.cutoffFactor = 1.5
13 #band related
14 cal.iniCharge = ./rho.bin
15 band.kpointsCoord = [0.00000000,0.00000000,0.00000000,0.00000000,0.00000000,0.50000000,0.

↪→50000000,0.50000000,0.00000000,0.00000000,0.00000000,0.00000000,0.50000000,0.00000000,
↪→0.00000000]

16 band.kpointsLabel = [G,Z,F,G,L]
17 band.kpointsNumber = [20,20,20,20]
18 band.project = true
19 #soi related
20 sys.spin= non-collinear
21 sys.soi = true

Introduction to input parameters in soiband.in:

In spin-orbit coupling band calculations, the parameters from the self-consistent calculation and spin-orbit cou-
pling calculation are retained in soiband.in. After that, you can set the specific parameters for the band calculation.

52 2. Quickstart

DS-PAW Manual

Note

1. Initial magnetic moment setup refers to Application Case - Antiferromagnetic Calculation of the NiO
System. Set the Mag tag on the seventh line of the structure.as file.

2.17.2 Run the program
After preparing the input files, upload the soi.in, soiband.in, and structure.as files to the server for execution. Run

DS-PAW soi.in and DS-PAW soiband.in separately, following the methods described in the structural relaxation section.

2.17.3 Analysis Result Analysis
Based on the input files, after calculation completion, output files such as DS-PAW.log, scf.h5, and band.h5 will

be generated.

The processing of band.h5 follows the same method as the band calculation described in Section 2.3. The resulting
band structure should be as shown in Figure (a) below. Additionally, a calculation without spin-orbit coupling should
yield the band structure shown in Figure (b) below:

2.17. soc spin-orbit coupling calculation 53

DS-PAW Manual

(a)

54 2. Quickstart

DS-PAW Manual

(b)

The BandGap values are read from DS-PAW.log. The band gap values for Figures (a) and (b) are 0.3251 eV and 0.0814
eV, respectively. This leads to the conclusion that spin-orbit coupling calculations increase the band gap between the
valence and conduction bands.

2.18 AIMD molecular dynamics simulation
This section will introduce how to perform molecular dynamics simulations in DS-PAW, using a water molecule

system as an example.

2.18. AIMD molecular dynamics simulation 55

DS-PAW Manual

2.18.1 Input file for H2O molecular dynamics simulation
The input files include the parameter file aimd.in and the structure file structure.as. aimd.in is shown below:

1 #task type
2 task = aimd
3

4 #system related
5 sys.structure = structure.as
6 sys.symmetry = false
7 sys.functional = PBE
8 sys.spin = none
9

10 #scf related
11 cal.methods = 1
12 cal.smearing = 1
13 cal.ksamping = G
14 cal.kpoints = [1, 1, 1]
15 cal.sigma = 0.1
16

17 #aimd related
18 aimd.ensemble = NPT
19 aimd.thermostat = langevin
20 aimd.atomFCoeffElements = [H_1]
21 aimd.atomFCoeffs = [1]
22 aimd.latticeFCoeff = 1
23 aimd.pressure = 100
24 aimd.timeStep = 1
25 aimd.totalSteps = 2000
26 aimd.iniTemp = 2000
27

28 #outputs
29 io.charge = false
30 io.wave = false

aimd.in Input Parameters:

In the molecular dynamics simulation calculation, try to keep the parameters in sys. and cal. in aimd.in, then set
the parameters specific to the molecular dynamics simulation calculation.

• task : Sets the calculation type. In this case, the calculation is an AIMD molecular dynamics simulation.

• aimd.ensemble : Specifies the ensemble used for the molecular dynamics simulation. In this case, the ensemble
is set to NPT.

• aimd.thermostat: Sets the thermostat or barostat used in the molecular dynamics simulation. In this example,
the Langevin thermostat and barostat are used.

• aimd.atomFCoeffElements : Specifies the element names of the atoms considered as Langevin atoms. In this
example, one hydrogen atom is set as a Langevin atom, and it is renamed to H_1;

• aimd.atomFCoeffs : Sets the friction coefficients for atoms considered as Langevin atoms, in units of ps-1;

• aimd.latticeFCoeff : Sets the friction coefficient of the lattice in the Langevin thermostat, unit ps-1;

• aimd.pressure : Sets the target pressure value for NPT simulations, in kbar;

• aimd.timeStep : Sets the time step for molecular dynamics simulation, in fs;

• aimd.totalSteps : Set the total number of steps for the molecular dynamics simulation;

56 2. Quickstart

DS-PAW Manual

• aimd.iniTemp : Sets the initial temperature for molecular dynamics simulations, in K;

The structure.as file is referenced as follows:

1 Total number of atoms
2 3
3 Lattice
4 4.00000000 0.00000000 0.00000000
5 0.00000000 4.00000000 0.00000000
6 0.00000000 0.00000000 4.00000000
7 Cartesian
8 H 2.63934013 1.89542007 1.58223984
9 H_1 1.36065987 2.11498988 2.45934006

10 O 1.65002999 1.88501012 1.54065994

Note

1. The element renaming rule is original element name + underscore + custom field.

2. In this example, the second hydrogen atom is set as a Langevin atom and renamed to H_1. The element
name for this atom needs to be manually modified in the structure.as file.

3. Since a custom element name H_1 exists in the calculation system, the program will automatically
search for the pseudopotential of the corresponding H element for H_1, and the user does not need to
prepare a new pseudopotential.

2.18.2 run the program
Once the input files are prepared, upload the files aimd.in and structure.as to the server and run them. Execute

DS-PAW aimd.in as described in Structure Relaxation.

2.18.3 Analysis of calculation results.
Based on the input files mentioned above, the calculation will produce output files such as DS-PAW.log, aimd.h5,

and latestStructure.as upon completion.

• DS-PAW.log : Log file generated by the DS-PAW molecular dynamics simulation.

• aimd.h5 : The h5 output file corresponding to the molecular dynamics calculation; atom positions, system energy,
temperature, and other data during the simulation are saved in aimd.h5. For details on the data structure, see the
Output File Format Specification section.

• latestStructure.as : The final state as structure file from molecular dynamics simulation, storing the final config-
uration and velocity information;

Data processing of the aimd.h5 file can be performed using a python script, as detailed in the Auxiliary Tool User
Guide section. The following figures should show the pressure vs. time and temperature vs. time curves obtained
from a 2000-step NPT ensemble simulation:

2.18. AIMD molecular dynamics simulation 57

DS-PAW Manual

Note

1. Different ensembles correspond to different optional thermostat ranges: the NVE ensemble can choose
the Andersen thermostat; the NVT ensemble can choose the Andersen, Nose-Hoover, and Langevin
thermostats; the NPT and NPH ensembles can choose the Langevin thermostat.

2. To simulate a high-temperature annealing process, set `aimd.ensemble` to SA and set the initial and

58 2. Quickstart

DS-PAW Manual

final temperatures via `aimd.iniTemp` and `aimd.finTemp` respectively.

3. The parameter `aimd.finTemp` only takes effect during simulated annealing. For constant-
temperature ensembles such as NPT and NVT, the final temperature is equal to the initial temperature.

4. When simulating a system containing langevin atoms, it is recommended to store the pseudopotential
files corresponding to the langevin atoms in the calculation directory to avoid the program reporting
error E3058 due to failure to find the pseudopotential files.

2.19 efield plus applied electric field calculation
This section will use the band calculation of a silicene model as an example to demonstrate how to perform

calculations with an external electric field in DS-PAW, and analyze the band gap opening before and after applying the
electric field.

2.19.1 Input file for silicene calculation with external electric field in vacuum
The input file contains parameter file Efield.in and structure file structure.as, Efield.in is as follows:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 #scf related
10 cal.sigma = 0.1
11 cal.cutoff = 520
12 cal.ksamping = G
13 cal.kpoints = [9, 9, 1]
14

15 scf.convergence = 1e-5
16

17 #outputs
18 io.charge = false
19 io.wave = false
20 io.band = true
21

22 corr.dipol=true
23 corr.dipolDirection = c
24 corr.dipolEfield = 0.2
25

26 band.kpointsLabel = [G,M,K,G]
27 band.kpointsCoord = [0.00000000,0.00000000,0.00000000,0.50000000,0.00000000,0.00000000,0.

↪→33333333,0.33333333,0.00000000,0.00000000,0.00000000,0.00000000]
28 band.kpointsNumber = [100,100,100]

Efield.in Input Parameters:

The calculation is performed on top of a one-step band calculation with an external electric field. In addition to
the basic parameters of the band calculation, the following new parameters are introduced:

2.19. efield plus applied electric field calculation 59

DS-PAW Manual

• corr.dipolEfield : Sets the magnitude of the applied electric field. This parameter is only effective when
corr.dipol = true and corr.dipolDirection is set;

The structure.as file is referenced as follows:

1 Total number of atoms
2 2
3 Lattice
4 3.860000 0.000000 0.000000
5 -1.930000 3.342860 0.000000
6 0.000000 0.000000 26.460000
7 Direct
8 Si 0.333333 0.166667 0.396825
9 Si 0.666758 0.833380 0.379216

2.19.2 run program execution
After preparing the input files, upload the Efield.in and structure.as files to the server for execution, and run DS-

PAW Efield.in as described in the structure relaxation section.

2.19.3 Analysis of calculation results
Based on the input files mentioned above, the calculation will generate output files such as DS-PAW.log and scf.h5.

:guilabel:`scf.h5: The h5 output file corresponding to the self-consistent field (SCF) calculation. When io.band
= true, the band structure data will be written to the scf.h5 file;

In this example, the parameter corr.dipolEfield = 0.2, indicating an applied electric field strength of 0.2
eV/Å. The band structure calculated under this electric field is shown in Figure (a).

60 2. Quickstart

DS-PAW Manual

(a)

Repeating the above calculation with the parameter corr.dipolEfield = 0, i.e., band structure calculation without
an electric field, results in the band diagram shown in Figure (b).

2.19. efield plus applied electric field calculation 61

DS-PAW Manual

(b)

Comparing figures (a) and (b), we can conclude that applying an external electric field can open the band gap of silicene.
The values of the BandGap with and without the electric field, readable from the DS-PAW.log file, are 0.1176 eV and
0.0010 eV, respectively.

Note

1. The unit of the external electric field, eV/Å, is also the unit of atomic force.

2.20 polarization ferroelectric calculation
This section will use HfO2 as an example to introduce how to perform ferroelectric calculations using modern

polarization theory in DS-PAW, analyzing the ferroelectric polarization of HfO2.

62 2. Quickstart

DS-PAW Manual

2.20.1 HfO2 Ferroelectric Calculation Input File
The input files include the parameter file polarization.in and a series of structure files for different phases struc-

ture.as. The contents of polarization.in are as follows:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 #scf related
10 cal.methods = 3
11 cal.smearing = 4
12 cal.cutoff = 520
13 cal.ksamping = MP
14 cal.kpoints = [4, 4, 4]
15

16 scf.convergence = 1e-5
17

18 #outputs
19 io.charge = false
20 io.wave = false
21 io.polarization = true

:guilabel:`polarization.in Input Parameters:`

This calculation performs ferroelectric calculations based on a self-consistent calculation. In addition to the basic
parameters for the self-consistent calculation, the following parameters are newly added:

• io.polarization : Controls the switch for ferroelectric calculations in the self-consistent calculation;

The following is a reference structure.as file for the ferroelectric phase structure of HfO2 with polarization point-
ing downwards:

1 Total number of atoms
2 12
3 Lattice
4 5.04621935 0.00000000 0.00000000
5 0.00000000 5.07315250 0.00000000
6 0.00000000 0.00000000 5.25768906
7 Cartesian
8 Hf 1.34815269 1.22145222 0.17639072
9 Hf 1.34815269 3.75802848 2.45245381

10 Hf 3.69806665 1.22145222 2.80523525
11 Hf 3.69806665 3.75802848 5.08129834
12 O 0.35195212 1.93667284 1.92589951
13 O 0.35195212 4.47324910 0.70294502
14 O 2.32678304 2.48829365 3.85528783
15 O 2.32678304 5.02486989 4.03124575
16 O 2.71943629 5.02486989 1.40240122
17 O 2.71943629 2.48829365 1.22644331
18 O 4.69426723 1.93667284 4.55474404
19 O 4.69426723 4.47324910 3.33178954

2.20. polarization ferroelectric calculation 63

DS-PAW Manual

HfO2 ferroelectric phase structure with polarization pointing upwards, see the structure.as file below:

1 Total number of atoms
2 12
3 Lattice
4 5.04621935 0.00000000 0.00000000
5 0.00000000 5.07315250 0.00000000
6 0.00000000 0.00000000 5.25768906
7 Cartesian
8 Hf 1.34815269 1.31512402 0.17639072
9 Hf 1.34815269 3.85170026 2.45245381

10 Hf 3.69806665 1.31512402 2.80523525
11 Hf 3.69806665 3.85170026 5.08129834
12 O 0.35195212 0.59990340 1.92589951
13 O 0.35195212 3.13647965 0.70294502
14 O 2.32678304 2.58485884 4.03124575
15 O 2.32678304 5.12143510 3.85528783
16 O 2.71943630 5.12143510 1.22644331
17 O 2.71943630 2.58485884 1.40240122
18 O 4.69426723 0.59990340 4.55474404
19 O 4.69426723 3.13647965 3.33178954

64 2. Quickstart

DS-PAW Manual

Insert a series of intermediate transition structures between the polarization-down and polarization-up structures
using linear interpolation (neb.linear_interpolate), as detailed in the utility script neb_structure.py. In this example, 11
intermediate structures are inserted, resulting in a total of 13 configurations including the initial and final polarization
phases. Polarization calculations are then performed sequentially on all configurations.

2.20.2 Run the program.
After preparing the input files, upload polarization.in and each structure.as file to the server, placing the 13 struc-

tures into 13 directories. Then, execute DS-PAW polarization.in following the method described in Structure Relax-
ation.

2.20.3 Analysis of calculation results
Based on the input files mentioned above, 13 sets of output files will be generated after the calculation, including

DS-PAW.log, scf.h5, and polarization.txt.

• DS-PAW.log : The log file generated after the DS-PAW ferroelectric calculation.

• scf.h5 : The self-consistent field (SCF) calculation output file in h5 format. Note that the name of the h5 file
must strictly match the task type. For h5 file parsing, refer to the Output File Format Specification section.

• polarization.txt : The txt file generated after the ferroelectric polarization calculation is completed. It stores
the electronic and ionic contributions to polarization, as well as the total polarization quantum number, for easy
access by the user.

For the ferroelectric phase system with downward polarization (00) as an example, the ferroelectric polarization
data of HfO2 can be obtained from the polarization.txt file as follows:

Total(x y z) (µC/cm2)
-0.000043 -8.715604 -0.000002
Quantum(x y z) (µC/cm2)
60.067225 60.387821 62.584436

For example, in a polarization-up (12) ferroelectric phase system, the ferroelectric polarization data for HfO2

can be obtained from the polarization.txt file as follows:

2.20. polarization ferroelectric calculation 65

DS-PAW Manual

Total(x y z) (µC/cm2)
-0.000049 8.715446 0.000001
Quantum(x y z) (µC/cm2)
60.067225 60.387821 62.584436

The PolaTotal.py script can be used to process the scf.h5 file that writes polarization data. See the Auxiliary Tool
User Guide section for specific instructions. Processing the data for 13 ferroelectric calculations yields the following
result figure:

The figure above shows the polarization intensity Px, Py, and Pz in the x, y, and z directions, obtained after
polarization quantum periodic conversion. Since the polarization direction of HfO2 is the y-direction, the values of
Px and Pz do not change with atomic displacement.

• Analyzing the group with the polarization number closest to 0 in the Py direction, the polarization intensity
value of HfO2 is the difference in polarization number between the ferroelectric phase (downward polarization,
sequence number 00 or upward polarization, sequence number 12) and the central symmetric phase (transition
state, sequence number 06), combined with the polarization.txt file and the polarization data figure above, to
obtain:

• The polarization difference between configurations 00 and 06 is −69.103µC/cm2

• The polarization difference between configurations 12 and 06 is 69.103µC/cm2

Therefore, the polarization intensity of HfO2 is 69.103µC/cm2

66 2. Quickstart

DS-PAW Manual

2.21 Bader Charge Calculation
This section will use the NaCl crystal as an example to introduce how to perform Bader charge calculation in

DS-PAW and analyze the valence distribution of each atom in the NaCl system.

2.21.1 Input file for Bader charge calculation of NaCl crystal
The input files include the parameter file bader.in and the structure file structure.as. bader.in is as follows:

The bader.in file is shown below:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 #scf related
10 cal.methods = 1
11 cal.smearing = 1
12 cal.ksamping = G
13 cal.kpoints = [10, 10, 10]
14 cal.cutoff = 650
15 #outputs
16 io.charge = true
17 io.wave = false
18 io.bader = true

bader.in Input Parameter Description:

This Bader charge calculation is performed based on the self-consistent calculation. In addition to the basic
parameters of the self-consistent calculation, the following new parameters are added:

• io.bader: Controls the Bader charge calculation switch during the self-consistent calculation;

The structure.as file is referenced as follows:

1 Total number of atoms
2 8
3 Lattice
4 5.68452692 0.00000000 0.00000000
5 0.00000000 5.68452692 0.00000000
6 0.00000000 0.00000000 5.68452692
7 Cartesian
8 Na 4.26339519 1.42113173 1.42113173
9 Na 1.42113173 4.26339519 1.42113173

10 Na 1.42113173 1.42113173 4.26339519
11 Na 4.26339519 4.26339519 4.26339519
12 Cl 1.42113173 1.42113173 1.42113173
13 Cl 4.26339519 4.26339519 1.42113173
14 Cl 4.26339519 1.42113173 4.26339519
15 Cl 1.42113173 4.26339519 4.26339519

2.21. Bader Charge Calculation 67

DS-PAW Manual

Note

When io.bader is true, io.charge must also be true.

2.21.2 Run the program
After preparing the input files, upload the bader.in and structure.as files to the server for execution. Run DS-PAW

bader.in following the methods described in the structural relaxation section.

2.21.3 Analysis results analysis
Based on the input files mentioned above, after the calculation is complete, output files such as DS-PAW.log, scf.h5,

and bader.txt will be generated.

• DS-PAW.log : The log file generated after the DS-PAW Bader charge calculation.

• scf.h5 : The self-consistent field (SCF) calculation output file in h5 format. Note that the name of the h5 file
must strictly match the task type. For h5 file parsing, see the specific data structure details in the Output File
Format Specification section;

• bader.txt : The txt file generated after the Bader charge calculation, containing Bader charge data for quick access
by users.

The content of the bader.txt file is as follows, and the data obtained from the Bader charge analysis is consistent
with the data from the Henkelman group at the University of Texas at Austin.

Total number of valence electronics: 64

Element X Y Z Charge AtomicVolume MinDistance
Cl 0.25 0.25 0.25 7.85852 35.893 1.65799
Cl 0.75 0.75 0.25 7.85704 35.83 1.65799
Cl 0.75 0.25 0.75 7.84024 35.0495 1.65799
Cl 0.25 0.75 0.75 7.87537 36.6765 1.65799
Na 0.75 0.25 0.25 8.14221 10.0598 1.10532
Na 0.25 0.75 0.25 8.14223 10.0607 1.10532
Na 0.25 0.25 0.75 8.14221 10.0598 1.10532
Na 0.75 0.75 0.75 8.14221 10.0598 1.10532

2.22 bandunfolding calculation
This section will use the Cu3Au system as an example to demonstrate how to perform band unfolding calculations

in DS-PAW, and analyze the band structure of Cu3Au after unfolding.

2.22.1 Cu3Au band unfolding calculation input file
Band unfolding calculations require a two-step band calculation. Therefore, the input files include the parameter

files scf.in, bandunfolding.in, and the structure file structure.as.

The scf.in file is as follows:

1 task = scf
2

3 sys.structure = structure.as
4 sys.symmetry = true

(continues on next page)

68 2. Quickstart

https://theory.cm.utexas.edu/henkelman/code/bader/

DS-PAW Manual

(continued from previous page)

5 sys.functional = PBE
6 sys.spin = none
7

8 cal.methods = 1
9 cal.smearing = 1

10 cal.ksamping = MP
11 cal.kpoints = [3, 3, 3]
12 cal.cutoff = 650
13

14 scf.convergence = 1.0e-05
15

16 io.charge = true
17 io.wave = false

bandunfolding.in as follows:

1 task = band
2 cal.iniCharge = ./rho.bin
3

4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 cal.methods = 1
10 cal.smearing = 1
11 cal.ksamping = MP
12 cal.kpoints = [3, 3, 3]
13 cal.cutoff = 500
14

15 scf.convergence = 1.0e-05
16

17 band.unfolding = true
18 band.primitiveUVW=[0.0, 0.5, 0.5, 0.5, 0.0, 0.5, 0.5, 0.5, 0.0]
19 band.kpointsLabel= [R,G,X]
20 band.kpointsCoord= [0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5]
21 band.kpointsNumber= [101, 101]
22

23 io.charge = false
24 io.wave = false

bandunfolding.in Input parameter introduction:

The band unfolding calculation is performed based on the band calculation, and the band calculation must be
completed in a two-step process. In addition to the basic parameters for band calculation, the new parameters are as
follows:

• band.unfolding : Controls the switch for band unfolding calculation in band structure calculations;

• band.primitiveUVW : Sets the UVW coefficients. Multiplying the supercell lattice vectors by the UVW coef-
ficients results in the primitive cell lattice vectors, which is used to control the band unfolding parameters.

The structure.as file is referenced as follows:

2.22. bandunfolding calculation 69

DS-PAW Manual

1 Total number of atoms
2 4
3 Lattice
4 3.7530000210 0.0000000000 0.0000000000
5 0.0000000000 3.7530000210 0.0000000000
6 0.0000000000 0.0000000000 3.7530000210
7 Direct
8 Au 0.000000000 0.000000000 0.000000000
9 Cu 0.000000000 0.500000000 0.500000000

10 Cu 0.500000000 0.000000000 0.500000000
11 Cu 0.500000000 0.500000000 0.000000000

2.22.2 run program execution
After preparing the input files, upload the scf.in, bandunfolding.in, and structure.as files to the server and run

them. Execute DS-PAW scf.in as described in the structure relaxation section. After the self-consistent calculation is
completed, execute DS-PAW bandunfolding.in.

2.22.3 Analysis of calculation results.
Based on the input files mentioned above, the calculation will generate output files such as DS-PAW.log, scf.h5,

and band.h5.

:guilabel:`band.h5 : The h5 output file corresponding to the band structure calculation. Compared to the band
structure calculation, this file adds the UnfoldingBandInfo section. See Output File Format Specification for a detailed
structure analysis.

The script bandunfolding.py can be used to process data from band.h5. See Auxiliary Tool User Guide for detailed
instructions. The resulting band structure plot should look like the following figure, consistent with the results reported
in1.

1 Mingxing Chen and M.ăWeinert. Layer k-projection and unfolding electronic bands at interfaces. Phys. Rev. B, 98:245421, Dec 2018.
doi:10.1103/PhysRevB.98.245421.

70 2. Quickstart

https://doi.org/10.1103/PhysRevB.98.245421

DS-PAW Manual

2.23 epsilon Dielectric Constant Calculation
This section will use the Si system as an example to introduce how to perform dielectric constant calculations in

DS-PAW.

2.23.1 Si dielectric constant calculation input file
The input files consist of the parameter file epsilon.in and the structure file structure.as. The contents of epsilon.in

are as follows:

1 # task type
2 task = epsilon
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 #scf related
10 cal.methods = 1

(continues on next page)

2.23. epsilon Dielectric Constant Calculation 71

DS-PAW Manual

(continued from previous page)

11 cal.smearing = 1
12 cal.ksamping = G
13 cal.kpoints = [5, 5, 5]
14 cal.cutoff = 500
15 scf.convergence = 1.0e-7

epsilon.in Input parameter introduction:

The calculation of dielectric constants can be performed by directly specifying task. The new optional values for
task are as follows:

• task : Sets the calculation type. Adds the epsilon parameter, which corresponds to the calculation of the dielec-
tric constant here.

Note

Dielectric constant calculations are also possible when task = phonon and phonon.method = dfpt by
adding the parameter phonon.dfptEpsilon = true.

The structure.as file is referenced as follows:

1 Total number of atoms
2 8
3 Lattice
4 5.43070000 0.00000000 0.00000000
5 0.00000000 5.43070000 0.00000000
6 0.00000000 0.00000000 5.43070000
7 Cartesian
8 Si 0.67883750 0.67883750 0.67883750
9 Si 3.39418750 3.39418750 0.67883750

10 Si 3.39418750 0.67883750 3.39418750
11 Si 0.67883750 3.39418750 3.39418750
12 Si 2.03651250 2.03651250 2.03651250
13 Si 4.75186250 4.75186250 2.03651250
14 Si 4.75186250 2.03651250 4.75186250
15 Si 2.03651250 4.75186250 4.75186250

2.23.2 run program execution
Once the input files are ready, upload the epsilon.in and structure.as files to the server and run the DS-PAW

epsilon.in as described in the structure relaxation section.

2.23.3 Analysis of calculation results
Based on the input files mentioned above, the calculation will generate output files such as DS-PAW.log, epsilon.h5,

and epsilon.txt.

• DS-PAW.log : The log file generated after the DS-PAW dielectric constant calculation;

• epsilon.h5 : The h5 output file corresponding to the dielectric constant calculation. For the specific data structure,
see the Output File Format Specification section;

• epsilon.txt : The txt text file generated after the dielectric constant calculation, which writes data related to the
dielectric constant for quick user access.

72 2. Quickstart

DS-PAW Manual

The following data can be obtained from the epsilon.txt file:

Total Part
13.309902 0.000000 -0.000000
-0.000000 13.309902 -0.000000
-0.000000 0.000000 13.309902

Analyzing the table above, the dielectric constant of the system is 13.309902, which is consistent with the literature
value of 13.31 reported in :footcite:p:PhysRevB.73.045112.

2.24 Piezoelectric Tensor Calculation
This section will demonstrate how to calculate the piezoelectric tensor, specifically obtaining the piezoelectric

coefficient e33(0) for a material, using AlN as an example within the DS-PAW framework.

2.24.1 Input file for piezoelectric tensor calculation of AlN
The input file contains the parameter file piezo.in and the structure file structure.as, with piezo.in as follows:

1 task = epsilon
2 #system related
3 sys.structure = structure.as
4 sys.symmetry = true
5 sys.functional = PBE
6 sys.spin = none
7

8 #scf related
9 cal.methods = 1

10 cal.smearing = 1
11 cal.ksamping = G
12 cal.kpoints = [10, 10, 10]
13 cal.cutoffFactor = 1.5
14 scf.convergence = 1.0e-7
15

16 #outputs
17 io.charge = false
18 io.wave = false

piezo.in Input parameter introduction:

• task : Sets the calculation type, adding the epsilon parameter; here, it corresponds to the piezoelectric tensor
calculation.

• scf.convergence : Sets the precision for electronic convergence in dielectric tensor calculations; it is recom-
mended to increase the precision, which is set to 1.0e-7 here.

structure.as file is referenced as follows:

1 Total number of atoms
2 8
3 Lattice
4 3.11606630 0.00000000 0.00000000
5 0.00000000 5.39683518 0.00000000
6 0.00000000 0.00000000 5.00770902

(continues on next page)

2.24. Piezoelectric Tensor Calculation 73

DS-PAW Manual

(continued from previous page)

7 Cartesian
8 Al 0.00000000 3.59735137 0.00946380
9 Al 0.00000000 1.79945276 2.51320124

10 Al 1.55803315 0.89899597 0.00945662
11 Al 1.55803315 4.49786165 2.51308138
12 N 0.00000000 3.59851112 1.91845914
13 N 0.00000000 1.79831356 4.42266820
14 N 1.55803315 0.90013952 1.91851680
15 N 1.55803315 4.49672497 4.42258192

2.24.2 run program execution
Once the input files are ready, upload the files piezo.in and structure.as to the server and run DS-PAW piezo.in

following the method described in Structure Relaxation.

2.24.3 Analysis of calculation results
Based on the input files mentioned above, the calculation will produce the following output files: DS-PAW.log,

epsilon.h5, and epsilon.txt.

• DS-PAW.log : The log file generated after the DS-PAW piezoelectric tensor calculation.

• epsilon.h5 : The h5 output file corresponding to the dielectric constant calculation, and the specific data structure
can be found in the Output File Format Specification section;

• epsilon.txt : The txt text file after the piezoelectric calculation is completed. This file writes piezoelectric-related
data for users to quickly obtain information.

The following data can be obtained from the epsilon.txt file:

Piezoelectric Tensor (C/m^2)(Row: x y z Column: XX YY ZZ XY YZ ZX)
Electronic Part
0.000000 0.000000 0.000000 0.000006 0.000000 0.336610
-0.000001 0.000007 0.000003 0.000000 0.336662 0.000000
0.266339 0.265888 -0.419569 0.000000 -0.000014 0.000000
Ionic Part:
-0.000004 0.000002 0.000002 0.000032 -0.000000 -0.681702
-0.000163 -0.000239 0.000314 -0.000000 -0.699012 -0.000000
-0.911456 -0.913265 1.943887 -0.000000 -0.000633 -0.000000
Total Part:
-0.000004 0.000002 0.000002 0.000039 -0.000000 -0.345092
-0.000164 -0.000232 0.000317 -0.000000 -0.362350 -0.000000
-0.645117 -0.647377 1.524318 -0.000000 -0.000647 -0.000000

Analyzing the above table, the value of the piezoelectric tensor electronic contribution e33(0) is -0.419569 C/m2,
and the total piezoelectric tensor e33 is 1.524318 C/m2, which is close to the literature values2 of -0.47 C/m2 and
1.46 C/m2.

2 Fabio Bernardini, Vincenzo Fiorentini, and David Vanderbilt. Spontaneous polarization and piezoelectric constants of iii-v nitrides. Phys. Rev.
B, 56:R10024–R10027, Oct 1997. doi:10.1103/PhysRevB.56.R10024.

74 2. Quickstart

https://doi.org/10.1103/PhysRevB.56.R10024

DS-PAW Manual

2.25 fixcell Fixed Basis Vector Relaxation Calculation
This section will use the MoS2 system as an example to introduce how to perform fixed-lattice relaxation calcu-

lations in DS-PAW.

2.25.1 Fixed-basis-vector relaxation calculation input file for MoS2

The input file consists of the parameter file relax.in and the structure file structure.as, with relax.in as follows:

1 # task type
2 task = relax
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = false
6 sys.functional = PBE
7 sys.spin = none
8

9 #scf related
10 cal.methods = 1
11 cal.smearing = 1
12 cal.ksamping = G
13 cal.cutoff = 650
14 cal.kpoints = [19, 19, 5]
15 #relax related
16 relax.freedom = all
17 relax.convergence = 0.05
18 relax.methods = CG

The structure.as file is referenced as follows:

1 Total number of atoms
2 6
3 Lattice Fix_x Fix_y Fix_z
4 3.19031572 0.00000000 0.00000000 F T T
5 -1.59515786 2.76289446 0.00000000 F F T
6 0.00000000 0.00000000 14.87900448 T T T
7 Cartesian
8 S 0.00000000 1.84193052 12.72413785
9 S 1.59515943 0.92096386 5.28463561

10 S 0.00000000 1.84193052 9.59436887
11 S 1.59515943 0.92096386 2.15486663
12 Mo 1.59515943 0.92096386 11.15925336
13 Mo 0.00000000 1.84193052 3.71975112

Introduction to the structure.as tag settings:

To perform relaxation calculations with fixed cell dimensions, you need to add the fix tags in the structure.as file,
similar to the fix tag settings for atomic relaxation (adding the Fix tag after the atomic coordinates). To fix the lattice
vectors, add the Fix tag after the Lattice line on the third line of the structure.as file. In this case, the tags correspond
to fixing the c-axis and the y and z directions of the a-axis, and the z direction of the b-axis of the cell.

2.25. fixcell Fixed Basis Vector Relaxation Calculation 75

DS-PAW Manual

2.25.2 Run the program.
After preparing the input files, upload the relax.in and structure.as files to the server and run them, executing

DS-PAW relax.in as described in the structure relaxation section.

2.25.3 Analysis of calculation results
Based on the input files mentioned above, after the calculation is completed, output files such as DS-PAW.log,

relax.h5, and latestStructure.as will be generated.

• relax.h5: The corresponding h5 output file for the relaxation calculation;

• latestStructure.as: The final structure file in .as format after relaxation, allowing direct data viewing;

Drag latestStructure.as into Device Studio to view the structure, or open the file directly to see the structural data
after relaxation ends, as follows:

1 Total number of atoms
2 6
3 Lattice
4 3.19696732 0.00000000 0.00000000
5 -1.59848077 2.76865753 0.00000000
6 0.00000000 0.00000000 14.87900448
7 Direct
8 Mo 0.66666701 0.33333316 0.74999995
9 Mo 0.33333340 0.66666675 0.24999997

10 S 0.33333340 0.66666666 0.85535854
11 S 0.66666686 0.33333303 0.35535875
12 S 0.33333367 0.66666699 0.64464148
13 S 0.66666708 0.33333333 0.14464130

Comparing the results, before relaxation a = b = 3.19031572, after relaxation a = b = 3.19696732, while c =
14.87900448 remained unchanged.

2.26 Calculation of Thermodynamic Properties of Phonons for Ther-
mal Transport

This section will use a Si system as an example to introduce how to perform phonon thermodynamic property
calculations in DS-PAW.

2.26.1 Input file for phonon thermodynamic properties calculation of Si
The input files include a parameter file, phonon-thermal.in, and a structure file, structure.as. phonon-thermal.in

is shown below:

1 # task type
2 task = phonon
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 #scf related
10 cal.methods = 1

(continues on next page)

76 2. Quickstart

DS-PAW Manual

(continued from previous page)

11 cal.smearing = 1
12 cal.ksamping = G
13 cal.kpoints = [5, 5, 5]
14 cal.cutoffFactor = 1.5
15 scf.convergence = 1.0e-7
16 #phonon related
17 phonon.structureSize = [2,2,2]
18 phonon.type =dos
19 phonon.qpoints = [31,31,31]
20 phonon.method = dfpt
21

22 phonon.thermal=true
23 phonon.thermalRange = [0,1000,10]

Input parameters description for phonon-thermal.in:

• phonon.thermal: Controls the thermodynamic calculation switch in phonon calculations; effective only when
phonon.method = dfpt.

• phonon.thermalRange : Sets the temperature range and data storage interval for thermodynamic calculations;

The following describes the structure.as file:

1 Total number of atoms
2 2
3 Lattice
4 0.00 2.75 2.75
5 2.75 0.00 2.75
6 2.75 2.75 0.00
7 Direct
8 Si -0.125000000 -0.125000000 -0.125000000
9 Si 0.125000000 0.125000000 0.125000000

2.26.2 Run the program
After preparing the input files, upload the phonon-thermal.in and structure.as files to the server for execution. Run

DS-PAW phonon-thermal.in following the method described in the structural relaxation section.

2.26.3 Results Analysis
Based on the input files mentioned above, after the calculation is complete, output files such as DS-PAW.log and

phonon.h5 will be generated.

• DS-PAW.log: The log file generated from the DS-PAW phonon calculation.

• phonon.h5: The h5 output file from the DS-PAW phonon calculation. Enabling thermodynamic calculations will
write ThermalInfo data to the generated phonon.h5 file. See Output File Format Specification for details.

The phonon thermodynamic data can be processed using the phonon_thermal.py script, as detailed in the Auxiliary
Tool User Guide section. Analyzing the thermodynamic data yields curves of entropy, heat capacity, and Helmholtz
free energy as a function of temperature, which are consistent with the results presented in the phonopy git repository:

2.26. Calculation of Thermodynamic Properties of Phonons for Thermal Transport 77

https://phonopy.github.io/phonopy/examples#thermal-properties

DS-PAW Manual

2.27 solid state NEB calculation
This section will use the HfZrO system as an example to illustrate how to perform solid state NEB calculations

with cell relaxation within DS-PAW.

2.27.1 HfZrO Solid state NEB input file
The input files include the parameter file ssneb.in and the structure file structure.as, with the contents of ssneb.in

as follows:

1 task = neb
2

3 sys.structure = structure.as
4 sys.functional = LDA
5 sys.spin = none
6 sys.symmetry = false
7

8 cal.ksamping = G
9 cal.kpoints = [10,10,10]

10 cal.cutoff = 650
11 cal.methods = 1
12 cal.smearing = 1

(continues on next page)

78 2. Quickstart

DS-PAW Manual

(continued from previous page)

13 cal.sigma = 0.05
14

15 scf.mixType = Broyden
16 scf.mixBeta = 0.4
17 scf.convergence = 1e-6
18 scf.max = 300
19

20 neb.springK = 5
21 neb.images = 6
22 neb.iniFin = true
23 neb.method = QM2
24 neb.convergence = 0.01
25 neb.max = 500
26 neb.freedom = all
27

28 io.wave = false
29 io.charge = false

ssneb.in Input Parameter Introduction:

• neb.freedom : Specifies the dimensions for transition state relaxation. Setting it to all corresponds to relaxing
the cell size;

• neb.method : Sets the method for transition state search. When neb.freedom = all, the available options for
this parameter are QM2 and FIRE;

structure.as must be provided multiple times, and the initial state structure structure00.as is referenced as follows:

1 Total number of atoms
2 12
3 Lattice
4 5.00209138 0.00000009 0.00000004
5 0.00000009 5.00209143 -0.00000004
6 0.00000004 -0.00000004 5.07896990
7 Cartesian
8 Hf 2.50104558 2.50104575 0.00000000
9 Hf 0.00000000 0.00000000 0.00000000

10 O 3.75156841 1.25052303 1.47285183
11 O 3.75156857 3.75156869 1.04735062
12 O 1.25052293 1.25052297 3.60611823
13 O 1.25052286 3.75156867 4.03161932
14 O 1.25052287 3.75156860 1.47285187
15 O 1.25052275 1.25052294 1.04735054
16 O 3.75156850 1.25052287 4.03161945
17 O 3.75156850 3.75156869 3.60611821
18 Zr 2.50104577 0.00000000 2.53948497
19 Zr 0.00000000 2.50104594 2.53948491

Final state structure: See structure07.as below.

1 Total number of atoms
2 12
3 Lattice
4 4.98221520 -0.00002552 0.00036684

(continues on next page)

2.27. solid state NEB calculation 79

DS-PAW Manual

(continued from previous page)

5 -0.00002562 4.99587652 0.00005905
6 0.00039053 0.00006126 5.18258321
7 Cartesian
8 Hf 2.30823006 2.49975412 0.04967381
9 Hf 0.00919001 0.00195723 0.38722458

10 O 4.03365086 0.66419181 2.12958714
11 O 4.00001549 3.18954023 0.89210846
12 O 0.95871628 1.24120307 4.04442128
13 O 0.94984693 3.74053908 4.19050825
14 O 1.35895285 3.73907584 1.57483409
15 O 1.36804279 1.24264997 1.42944278
16 O 3.29999107 0.69159253 4.72728663
17 O 3.26626721 3.16200890 3.48972595
18 Zr 2.31915914 0.00841995 2.97686955
19 Zr 4.98082249 2.50639160 2.64290889

The initial and final state configurations are displayed in Device Studio as follows:

80 2. Quickstart

DS-PAW Manual

Note

1. When neb.freedom = all, the options for neb.method are QM2 or FIRE.

2. The generation of intermediate structures can be done by calling the neb_interpolate_structures.
py script, as described in the Auxiliary Tools Tutorial - Transition State Section. After interpolation, the
neb_visualize.py script can be called to preview the interpolated structures, and the calc_dist.py
script can be used to check if the distances between images are reasonable.

2.27.2 Run the program.
Once the input files are prepared, upload the ssneb.in and the folders containing structureNo.as files to the server

and run the DS-PAW ssneb.in command as described in the structure relaxation section.

2.27.3 Analysis of the calculation results
After the calculation is completed based on the input files described above:

• The folders containing the initial and final state structures will generate the self-consistent calculation output files
such as DS-PAW.log, latestStructure00.as, and scf.h5;

• The folders No containing the intermediate structures structureNo.as (folders containing intermediate structures
involved in the transition state calculation, the number of intermediate structures is determined by the neb.
images parameter) will generate output files such as nebNo.h5 and latestStructureNo.as from the structure op-
timization.

• The outermost directory will generate the files DS-PAW.log and neb.h5. The file neb.h5 is a summary of the
information in the nebNo.h5 files located in the No folders.

• DS-PAW.log : Log file generated after DS-PAW transition state calculation.

• neb.h5 : The h5 data file after the transition state calculation is completed; the reaction coordinate, energy
changes, and other data are saved in neb.h5. For details on the data structure, see the Output File Format Speci-
fication section.

The results of the NEB calculation can be analyzed using the python script neb.py. The analysis script should
be executed within the complete NEB calculation directory. See the Auxiliary Tool User Guide section for specific
instructions. The resulting reaction barrier curve should look like this:

2.27. solid state NEB calculation 81

DS-PAW Manual

2.28 Solvation Energy Calculation
This section will use the H2O system as an example to demonstrate how to calculate solvation energy under the

implicit solvent model in DS-PAW.

2.28.1 H2O solvation energy calculation input file
The input file includes the parameter file scf.in and the structure file structure.as, with scf.in as follows:

1 # task type
2 task = scf
3 #system related
4 sys.structure = structure.as
5 sys.symmetry = true
6 sys.functional = PBE
7 sys.spin = none
8

9 #scf related
(continues on next page)

82 2. Quickstart

DS-PAW Manual

(continued from previous page)

10 cal.methods = 1
11 cal.smearing = 3
12 cal.sigma = 0.2
13 cal.ksamping = G
14 cal.kpoints = [1, 1, 1]
15 cal.supGrid = true
16 cal.cutoff = 800
17 scf.convergence = 1.0e-6
18

19 #implicit solvation model
20 sys.sol = true
21 sys.solEpsilon = 80
22 sys.solTAU = 5.25E-4
23

24 #outputs
25 io.charge = false
26 io.wave = false
27 io.boundCharge = true

scf.in input parameters:

• sys.sol: Controls the switch for introducing the implicit solvation model. If true, solvation effects are consid-
ered.

• sys.solEpsilon: Sets the magnitude of the solvent dielectric constant, set to 80 in this example;

• sys.solTAU : Specifies the magnitude of the effective interfacial tension per unit area, in units of eV/Å^2, with
a default value of 5.25E-4. It is recommended to set this parameter to a value less than 1e-3.

• io.boundCharge: Switch for controlling the output of solvent-bound charge density files.

Structure file: referenced as structure.as as follows

1 Total number of atoms
2 3
3 Lattice
4 10.00000000 0.00000000 0.00000000
5 0.00000000 10.00000000 0.00000000
6 0.00000000 0.00000000 10.00000000
7 Cartesian
8 H 5.63934499 4.89541998 4.58224001
9 H 4.36065501 5.11499002 5.45934003

10 O 4.65002501 4.88500998 4.54065997

2.28.2 run program execution
Once the input files are prepared, upload the :guilabel:`scf.in and :guilabel:`structure.as files to the server and

run them, executing :guilabel:`DS-PAW scf.in according to the method described in Structure Relaxation.

2.28.3 Analysis of the calculation results
Based on the input files, the calculation will generate output files including DS-PAW.log, scf.h5, and rhoBound.h5.

• DS-PAW.log : The log file generated after the DS-PAW implicit solvation model calculation.

• scf.h5 : The self-consistent field (SCF) calculation output file in h5 format;

2.28. Solvation Energy Calculation 83

DS-PAW Manual

• rhoBound.h5 : The solvent-bound charge density file obtained from implicit solvent calculations.

This example calculates the total energy Esol including the solvation energy, which is calculated as follows:

Solvation Energy=E(sys.sol=true)-E(sys.sol=false)

Based on this formula, a separate calculation with sys.sol = false is required to obtain the total energy without
solvation, Enosol. Substituting Enosol into the above formula yields a solvation energy of -0.313 eV for water, which
is consistent with the literature value reported in3.

When performing calculations with the implicit solvation model, the solvent-bound charge density distribution
file around the solute, rhoBound.h5, can also be obtained. This file can be post-processed using the python script
trans_rho.py. For specific operations, refer to the Auxiliary Tool User Guide section. The converted visualization file
can be opened in VESTA, resulting in the following isodensity surface distribution map:

As can be seen from the figure, the distribution of solvated positive and negative shielded charge densities is
located around the water molecules, forming a solvation shell, which is consistent with the models expectations and
similar to the distribution of solvent-bound charge densities calculated by other software.

2.29 fixedpotential fixed potential calculation
This section will demonstrate how to perform fixed potential calculations in DS-PAW, using the Cu−slab system

as an example.

2.29.1 Cu− slab Fixed Potential Calculation Input File
The input files include the parameter file fixedP.in and the structure file structure.as. The content of fixedP.in is as

follows:

1 # task type
2 task = scf
3

4 sys.functional = PBE
(continues on next page)

3 Kiran Mathew, Ravishankar Sundararaman, Kendra Letchworth-Weaver, TAăArias, and RichardăG Hennig. Implicit solvation model
for density-functional study of nanocrystal surfaces and reaction pathways. The Journal of chemical physics, 140(8):084106, 2014.
doi:10.1063/1.4865107.

84 2. Quickstart

https://doi.org/10.1063/1.4865107

DS-PAW Manual

(continued from previous page)

5 sys.structure = structure.as
6

7 cal.ksamping = G
8 cal.cutoff = 650
9 cal.sigma = 0.2

10 cal.smearing = 3
11 cal.kpoints = [7,7,1]
12

13 scf.convergence = 1.0e-6
14 scf.max = 200
15

16 sys.sol = true
17 sys.solEpsilon = 78.4
18 sys.solLambdaD = 3.04
19 sys.solTAU = 0
20

21 # Potential fixed
22 sys.fixedP = true
23 sys.fixedPPotential = 2.155
24

25 io.charge = true
26 io.wave = false

Introduction to input parameters for fixedP.in:

• task: Sets the calculation type; in this example, a fixed potential calculation is performed when task=scf.

• sys.sol: Enables the solvation model. Fixed potential calculations need to be performed based on the implicit
solvation model.

• sys.solEpsilon : Sets the solvent dielectric constant, which is set to 78.4 in this example.

• sys.solLambdaD : Uses the Poisson-Boltzmann equation and sets the Debye length. If not set, the Poisson
equation is used, which does not account for the contribution of interfacial ions to the electrostatic potential.

• sys.solTAU : Specifies the effective interfacial tension per unit area, in units of eV/Å^2. The default value is
5.25E-4, and it is recommended to set this parameter to a value less than 1e-3.

• sys.fixedP : Enables the fixed potential calculation;

• sys.fixedPPotential : Sets the potential value for the fixed potential calculation, defaulting to the Standard
Hydrogen Electrode (SHE) as the reference electrode potential. To use the Potential of Zero Charge (PZC) as
the reference electrode, set the parameter sys.fixedPType = PZC;

Note

1. Regarding the Debye length sys.solLambdaD, its expression is λD =
√

εεokBT
2c0z2q2

The Debye length for a 1M aqueous solution of +/-1 charged ions is: 3.04 Å

The structure.as file is referenced as follows:

1 Total number of atoms
2 8

(continues on next page)

2.29. fixedpotential fixed potential calculation 85

DS-PAW Manual

(continued from previous page)

3 Lattice
4 3.63404989 0.00000000 0.00000000
5 0.00000000 3.63404989 0.00000000
6 0.00000000 0.00000000 23.62132454
7 Cartesian
8 Cu 0.00000000 0.00000000 1.81702310
9 Cu 1.81702495 0.00000000 3.63404620

10 Cu 1.81702495 1.81702495 1.81702310
11 Cu 0.00000000 1.81702495 3.63404620
12 Cu 0.00000000 0.00000000 5.46390548
13 Cu 1.81702495 0.00000000 7.22885308
14 Cu 1.81702495 1.81702495 5.46390548
15 Cu 0.00000000 1.81702495 7.22885308

2.29.2 Run the program.
After preparing the input files, upload the :guilabel:`fixedP.in` and :guilabel:`structure.as` files to the server and

run them, executing :guilabel:`DS-PAW fixedP.in` as described in Structure Relaxation.

2.29.3 Analysis of calculation results
Based on the input files described above, the calculation will generate output files such as DS-PAW.log and scf.h5.

• DS-PAW.log : The log file generated after the DS-PAW calculation with a fixed potential is completed.

• scf.h5 : The h5 output file corresponding to DS-PAW when task equals scf; for the specific data structure, please
refer to section Output File Format Specification.

DS-PAW employs the steepest descent method for fixed-potential calculations, iteratively calculating the charge
of the system for self-consistent field (SCF) calculations. The convergence process of multiple SCF calculations is
written to the DS-PAW.log file. In this example, the convergence criterion is met at LOOP 5. The potential values of
the system at the end of LOOP 5 are shown below:

1 ## FINISHED FIXEDPOTENTIAL LOOP 5 ##
2 Electron : 149.993000
3 ElectrodePotential_SHE : 2.157747 V
4 ElectrodePotential_PZC : 2.484286 V
5 ElectrodePotential_SHE(PZC) : -0.326539 V
6 Chemical Potential(electron) : -6.757747 eV
7 Grand Total Energy(sigma->0) : -43088.518081 eV

Where

Electron is the number of electrons in the system at the end of the iteration;
ElectrodePotential_SHE is the electrode potential of the system at the end of the iteration relative to the Standard
Hydrogen Electrode (SHE);
ElectrodePotential_PZC is the potential of the system at the end of the iteration relative to the point of zero charge
(PZC);
ElectrodePotential_SHE(PZC) provides the electrode potential of the system at the point of zero charge (PZC)
relative to the Standard Hydrogen Electrode (SHE);
Chemical Potential(electron) provides the chemical potential of electrons at the iteration endpoint (with the
potential at the center of the implicitly solvated solution set to zero).

86 2. Quickstart

DS-PAW Manual

Grand Total Energy(sigma->0) Gives the total energy of the system at the iteration endpoint under the grand
canonical ensemble, which is related to the total energy of the system, the change in the number of electrons, and the
electron chemical potential.

The calculated potential of the system at the end of the calculation is 2.157 V, which is close to the target potential
of 2.155 V.

Note

1. Fixed potential calculations must be performed under the implicit solvent model; that is, when
sys.fixedP = true, sys.sol must also be set to true.

2. Currently, fixed potential calculations are only supported when task = scf.

3. ElectrodePotential_SHE=ElectrodePotential_PZC+ElectrodePotential_SHE(PZC)

2.30 Wannier interpolation band structure calculation
This section will use the Si system as an example to illustrate how to perform interpolated band structure calcu-

lations using Wannier functions in DS-PAW.

2.30.1 Si Interpolation Band Structure Input File
The input files include the parameter file wannier.in and the structure file structure.as. wannier.in is shown below:

1 # task type
2 task = wannier
3 sys.structure = structure.as
4 sys.symmetry = false
5 sys.functional = PBE
6 sys.spin = none
7 cal.methods = 1
8 cal.smearing = 1
9 cal.ksamping = G

10 cal.kpoints = [16,16,16]
11 cal.totalBands = 12
12

13 #wannier related
14 wannier.functions = 12
15 wannier.wannMaxIter = 20000
16 wannier.outStep = 50
17

18 #interpolated band related
19 wannier.interpolatedBand = true
20 wannier.kpointsLabel= [G,X,W,K,G,L]
21 wannier.kpointsCoord= [0, 0, 0, 0.5, 0, 0.5, 0.5, 0.25, 0.75, 0.375, 0.375, 0.75, 0, 0,␣

↪→0, 0.5, 0.5, 0.5]
22 wannier.kpointsNumber = [100]
23

24 io.charge = true
25 io.wave = true

wannier.in Input Parameters:

2.30. Wannier interpolation band structure calculation 87

DS-PAW Manual

• task = wannier: Sets the calculation type; the new optional value wannier enables Wannier function calcula-
tions.

• wannier.functions: Sets the number of Wannier functions;

• wannier.wannMaxIter: Sets the total number of iterations in the process of solving for the maximally localized
Wannier functions;

• wannier.outStep: Sets the step for outputting iterative results in the output file when task=wannier;

• wannier.interpolatedBand: Controls the switch for interpolated band calculation;

• wannier.kpointsLabel: Sets the high-symmetry point labels for Wannier function interpolation band fitting.

• wannier.kpointsCoord: Sets the high-symmetry point coordinates for Wannier function interpolation band
fitting.

• wannier.kpointsNumber: Sets the number of k-points between high-symmetry k-points for interpolated band
calculation; for example, setting the parameter to wannier.kpointsNumber = [100], the number of k-points
between the high-symmetry points G and X is 100, which is used to determine the k-point density; the code
performs equally-spaced k-point sampling between high-symmetry points X and W, W and K, K and G, and G
and L. The actual number of k-points can be found in the parameter printing section of DS-PAW.log.

The structure.as file is referenced as follows:

1 Total number of atoms
2 2
3 Lattice
4 0.00 2.75 2.75
5 2.75 0.00 2.75
6 2.75 2.75 0.00
7 Direct
8 Si -0.125000000 -0.125000000 -0.125000000
9 Si 0.125000000 0.125000000 0.125000000

Note

1. The initial projection is set in the structure.as file. First, add the WannProj tag on line 7, and then
write the initial projection orbital names after the atomic coordinates. Refer to the Wannier section in
Parameters Explanation for the recognizable projection orbital names for DS-PAW.

2. In this example, initial projections are not customized, and the program randomly selects them. If you
need to define initial projections, you can refer to the following format.

The structure.as file for custom initial projection orbitals is referenced as follows:

1 Total number of atoms
2 2
3 Lattice
4 0.00 2.75 2.75
5 2.75 0.00 2.75
6 2.75 2.75 0.00
7 Direct WannProj
8 Si -0.125000000 -0.125000000 -0.125000000 [s,p,sp3-1,sp3-2]
9 Si 0.125000000 0.125000000 0.125000000 [s,p,sp3-3,sp3-4]

88 2. Quickstart

DS-PAW Manual

Note

1. When customizing initial projection orbitals, the total number of projection orbitals in the structure.as
file must equal the number of Wannier functions (wannier.functions), otherwise the program will re-
port an error.

2. In this example, the total number of projected orbitals is 2*(1+3+1+1) = 12, which is consistent with
the wannier.functions = 12 parameter setting.

3. For atoms without the need to set initial projection orbitals, simply write `[]` after the corresponding
coordinates.

4. In this example, cal.totalBands is set to 12, so 12 cores are required when submitting the calculation.

2.30.2 run the program
Once the input files are ready, upload the wannier.in and structure.as files to the server and run the DS-PAW

wannier.in following the method described in structure relaxation.

2.30.3 Analysis Results Analysis
Based on the input files described above, the calculation will generate output files such as DS-PAW.log and wan-

nier.h5.

• DS-PAW.log : The log file generated after DS-PAW completes the Wannier interpolation band calculation.

• wannier.h5 : The h5 output file corresponding to the Wannier function interpolated band structure calculation;
for details on the data structure, see the Output File Format Specification section;

You can use the Auxiliary Tool User Guide –> band data processing –> bandplot.py script to directly plot the
Wannier interpolated bands, reading the wannier.h5 file.

You can also use bandcompare.py to compare the Wannier interpolated band structure with the DFT band structure.
See Auxiliary Tool User Guide for specific operations. The band comparison effect should be as follows:

2.30. Wannier interpolation band structure calculation 89

DS-PAW Manual

Note

1. Wannier calculations do not support opening pob, and the number of DFT bands calculated
(cal.totalBands) changes with the number of cores (cores) used. Therefore, it is recommended that
the number of cores used for Wannier calculations be consistent with the cal.totalBands parameter.

2. When the number of Wannier functions (wannier.functions) is less than cal.totalBands, the disentan-
glement process is required during the maximal localization of Wannier functions. In this case, if the
user does not define an energy frozen window (wannier.disFrozWin), the program will perform the
calculation using the default frozen window.

3. If a custom Frozen Window is defined, the number of bands included in `wannier.FrozWin` cannot
exceed the number of `wannier.functions`; otherwise, the program will report error E4024. At the
same time, the rationality of the window needs to be ensured, or good fitting results cannot be obtained.

4. The 2023A version of DS-PAW does not support Wannier calculations with the spin type set to non-
collinear.

2.31 ref References

90 2. Quickstart

3

Application Cases

This chapter presents various application examples of DS-PAW, including how to calculate magnetic moments
and how to calculate antiferromagnetic materials. Users can gain a deeper understanding of DS-PAW software through
the following application tutorials.

3.1 Calculation of the Magnetic Moment of Atom O

This section introduces the calculation of magnetic systems using a single oxygen atom as an example.

3.1.1 File Preparation for Self-Consistent Calculation of an O Atom
Since this calculation involves the magnetic moment of a single oxygen atom, structural relaxation is not necessary.

We proceed directly to the self-consistent field (SCF) calculation. Prepare the input files scf.in and structure.as. scf.in
is as follows:

task = scf
sys.symmetry = false
sys.structure = structure.as
sys.spin = collinear
cal.smearing = 1
cal.sigma = 0.01
cal.kpoints = [1, 1, 1]

The following parameters in the input file are crucial for this calculation:

• sys.symmetry: DS-PAW can reduce computational cost by using symmetry, but it may also lead to unreasonable
results such as energy degeneracy. Symmetry is turned off in this calculation;

• sys.spin: Specifies the systems magnetism as collinear.

• cal.kpoints: For non-periodic dimensions, the k-point can be set to 1;

The structure.as file is referenced as follows:

91

DS-PAW Manual

Total number of atoms
1
Lattice
7.50000000 0.00000000 0.00000000
0.00000000 8.00000000 0.00000000
0.00000000 0.00000000 8.90000000
Cartesian
O 0.00000000 0.00000000 0.00000000

The structure file uses Cartesian coordinates, hence the coordinate type in line 7 is Cartesian; to minimize
symmetry in the structure, the lattice was modified to a [7.5, 8, 8.9] lattice.

3.1.2 Run the program
After preparing the input files, upload the scf.in and structure.as files to the environment where DS-PAW is in-

stalled, and run the DS-PAW scf.in command.

3.1.3 Analysis of calculation results.
After the calculation based on the input files is completed, output files such as DS-PAW.log and scf.h5 will be

generated.

Open the scf.h5 file with HDFView, and the Eigenvalue data will be as follows:

The number of up-spin electrons is 4 and the number of down-spin electrons is 2, obtained from the Eigenvalue
- Spin - Occupation section of scf.h5. The total magnetic moment is 2µB, obtained from the MagInfo section of
scf.h5, and also confirmed as 2µB in DS-PAW.log.

3.2 NiO antiferromagnetic calculation
This section will introduce how to set up antiferromagnetic calculations using the NiO system as an example.

92 3. Application Cases

DS-PAW Manual

3.2.1 Self-consistent calculation for the NiO system
This case omits the structure relaxation process; users should perform a structure relaxation calculation first when

reproducing this case. Prepare the parameter file scf.in and the structure file structure.as, and the scf.in file is as follows:

task = scf
sys.structure = structure.as
sys.spin = collinear
cal.smearing = 4
cal.kpoints = [8, 8, 8]
cal.cutoff = 650

The following parameters in the input file of this calculation require special attention:

• cal.smearing: The tetrahedron method with Bloechl correction is employed in this calculation, and sigma
will be forced to 0 when using this method.

• sys.spin: Specifies the magnetism of the system. NiO is an antiferromagnetic material, so the magnetism is
set to collinear;

• cal.cutoff: Sets the plane-wave cutoff to 650 eV.

Refer to the structure.as file as follows:

Total number of atoms
4
Lattice
4.16840000 2.08420000 2.08420000
2.08420000 4.16840000 2.08420000
2.08420000 2.08420000 4.16840000
Cartesian Mag
Ni 1.04210000 1.04210000 1.04210000 2.0
Ni 5.21050000 5.21050000 5.21050000 -2.0
O 3.12630000 3.12630000 3.12630000 0
O 7.29470000 7.29470000 7.29470000 0

To set the magnetic moments, add the Mag tag after Cartesian on the seventh line of the structure file. Then,
set the magnetic moment for each atom on the line containing its coordinates. Because we need to represent antiferro-
magnetism (the entire system does not show a net magnetic moment, but individual atoms have magnetic moments),
this example uses a unit cell of 4 atoms. The magnetic moments for the 4 Ni atoms are set to 2, -2, 0, 0.

Note

1. The Mag tag allows setting the magnetic moments for each atom in the system. For collinear spin calcu-
lations, the total magnetic moment of each atom can be added. For spin-orbit coupling calculations, the
magnetic moments in the x, y, and z directions need to be added using the tags Mag_x, Mag_y, and Mag_z.
Add the magnetic moments in the three directions after the corresponding atomic coordinates. Taking the
NiO system as an example, if a spin-orbit coupling calculation is performed, the magnetic moment settings
should be as follows:

Total number of atoms
4
Lattice
4.16840000 2.08420000 2.08420000
2.08420000 4.16840000 2.08420000

(continues on next page)

3.2. NiO antiferromagnetic calculation 93

DS-PAW Manual

(continued from previous page)

2.08420000 2.08420000 4.16840000
Cartesian Mag_x Mag_y Mag_z
Ni 1.04210000 1.04210000 1.04210000 0.0 0.0 2.0
Ni 5.21050000 5.21050000 5.21050000 0.0 0.0 -2.0
O 3.12630000 3.12630000 3.12630000 0.0 0.0 0.0
O 7.29470000 7.29470000 7.29470000 0.0 0.0 0.0

3.2.2 run the program
After preparing the input files, upload the :guilabel:`scf.in` and :guilabel:`structure.as` files to the environment

where DS-PAW is installed, and run the command :guilabel:`DS-PAW scf.in`.

3.2.3 Analysis of self-consistent field (SCF) calculation results
Based on the input file described above, after the calculation is completed, the following output files will be gen-

erated: DS-PAW.log and scf.h5, etc. From DS-PAW.log, the total magnetic moment after the self-consistent calculation
can be read as 1e− 8µB, which is almost 0.

3.2.4 NiO Density of States Calculation
After that, we will prepare for the density of states (DOS) calculation, preparing the parameter file pdos.in, the

structure file structure.as, and the charge density file rho.bin obtained from the self-consistent calculation. The pdos.in
file is as follows:

task = dos
sys.structure = structure.as
sys.spin = collinear
cal.iniCharge = ./rho.bin
cal.smearing = 4
cal.kpoints = [16, 16, 16]
cal.cutoff = 650
dos.range = [-20, 20]
dos.resolution = 0.05
dos.project = true

pdos.in Input Parameters:

• dos.range: Specifies the energy range for DOS calculation, from -20 to 20 eV.

• dos.resolution : indicates the interval precision for sampling within the energy calculation range;

• dos.project: Controls the projection calculation for the density of states; projection for the density of states is
enabled in this calculation.

3.2.5 run the program
Upload the newly created pdos.in file to the server, and then run the command DS-PAW pdos.in.

3.2.6 Analysis of DOS (Density of States) Calculation Results
After completing the calculation based on the input file, output files such as DS-PAW.log and dos.h5 will be

generated. Using the relevant scripts in Auxiliary Tool User Guide to process the dos.h5 file and analyze the t2g and
eg orbitals of the 2nd Ni atom, the density of states distribution shown below is obtained. This is the result without a
U value applied:

94 3. Application Cases

DS-PAW Manual

3.2.7 NiO system DFT+U density of states calculation
The calculation procedure for the density of states (DOS) of the NiO system using DFT+U is the same as that

described in the previous section for the NiO system, with the difference being that DFT+U parameters need to be
included in both the self-consistent field (SCF) calculation and the DOS calculation. The input parameters that need
to be added are as follows:

#correction related
corr.dftu=true
corr.dftuForm = 1
corr.dftuElements =[Ni]
corr.dftuOrbital=[d]
corr.dftuU = [8]
corr.dftuJ = [0.95]

Here are a few parameters in the input file that require special attention for this calculation:

• corr.dftu sets the switch for turning on DFT+U, which is set to true in this example;

• corr.dftuForm sets the DFT+U method, with 1 corresponding to the DFT+U+J method (Liechtensteins for-
mulation);

• corr.dftuElements sets the elements to which U is applied, which is Ni in this example;

• corr.dftuOrbital specifies the orbitals to which the U correction is applied, which is set to d orbitals in this
example;

• corr.dftuU sets the specific U value, which is set to 8 in this example;

• corr.dftuJ sets the specific J value, which is set to 0.95 in this example;

After the self-consistent field (SCF) and density of states (DOS) calculations are completed, the distribution of
the t2g and eg orbital density of states for the second Ni atom after the DFT+U calculation is analyzed. The resulting
distribution plot is shown below:

3.2. NiO antiferromagnetic calculation 95

DS-PAW Manual

Note

1. DFT+U allows setting U values for multiple elements and their corresponding orbitals. For example,
to set U=8 and J=0.95 for Nis d orbitals, and U=1 and J=0 for Os p orbitals, the settings are as follows:
corr.dftuElements = [Ni,O] corr.dftuOrbital = [d,p] corr.dftuU = [8,1] corr.dftuJ = [0.95,0].

2. The default DFT+U method is DFT+U (Dudarevs formulation), corresponding to the parameter
corr.dftuForm = 2. When using this method, the J value is forced to be 0, so setting the J value is
invalid in this case.

3.3 AuAl slab model work function calculation
This section will demonstrate how to calculate the work function using the AuAl slab model as an example.

3.3.1 File Preparation for Self-Consistent Calculation of the AuAl Slab Model
This case omits the structure relaxation process; users need to perform structure relaxation calculations before

reproducing this case. Prepare the parameter file scf.in and the structure file structure.as. The scf.in file is as follows:

task = scf
sys.structure = structure.as
sys.spin = collinear
cal.smearing = 4
cal.kpoints = [8, 8, 1]
cal.cutoff = 530

io.potential=true
potential.type = hartree

#correction related
(continues on next page)

96 3. Application Cases

DS-PAW Manual

(continued from previous page)

corr.dipol = true
corr.dipolDirection = c

The following parameters in the input file of this calculation require special attention:

• io.potential is the switch for calculating the potential function in the self-consistent field (SCF) calculation;

• potential.type controls the type of potential function to be saved. The electrostatic potential data is needed
when calculating the work function, and here we set potential.type = hartree;

• corr.dipol is the switch for dipole correction; set to true in this example;

• corr.dipolDirection In this example, the direction of the dipole correction is set to the c direction of the
lattice vectors.

The structure.as file is referenced as follows:

Total number of atoms
8
Lattice
4.06384898 0.00000000 0.00000000
0.00000000 4.06384898 0.00000000
0.00000000 0.00000000 20.00000000
Cartesian
Au 1.01596223 1.01596223 0.00000000
Au 3.04788672 3.04788672 0.00000000
Au 3.04788672 1.01596224 2.03914999
Au 1.01596224 3.04788672 2.03914999
Al 1.01596224 1.01596224 4.07109999
Al 3.04788673 3.04788673 4.07109999
Al 3.04788673 1.01596224 6.09585000
Al 1.01596224 3.04788673 6.09585000

The structure is shown in the figure below:

3.3. AuAl slab model work function calculation 97

DS-PAW Manual

3.3.2 run program execution
After preparing the input files, upload the scf.in and structure.as files to the environment where DS-PAW is in-

stalled and run the command DS-PAW scf.in.

3.3.3 workfunction data analysis
After the calculation based on the above input files, the output files such as DS-PAW.log and scf.h5 will be gener-

ated. Processing the data from scf.h5 yields the work function.

You can use a python script to analyze the scf.h5 file, averaging the 3D potential function in-plane. See the
Auxiliary Tool User Guide section for specific instructions. The resulting vacuum direction potential curve is shown
below:

From the in-plane averaged potential plot, the vacuum potentials for Au and Al are 5.5 eV and 4.6 eV, respectively.

The Fermi level can be read from scf.h5 as 0.113 eV.

Based on the formula w = −eϕ − EF , the work function of Au in the AuAl slab model is 5.387 eV, and that of
Al is 4.487 eV. The literature values1 are: Aus work function in the range of 5.10-5.47 eV, and Als work function in
the range of 4.06-4.26 eV.

1 WilliamăM Haynes, DavidăR Lide, and ThomasăJ Bruno. CRC handbook of chemistry and physics. CRC press, 2016.
doi:10.1201/9781315380476.

98 3. Application Cases

https://doi.org/10.1201/9781315380476

DS-PAW Manual

3.4 Ru − N4 Computational Electrocatalysis of Nitrogen Reduction
Reaction

This section will demonstrate how to simulate an electrocatalytic nitrogen reduction reaction (eNRR) using DS-
PAW. The reaction uses a carbon-based supported transition metal Ru single atom as a catalyst, and DS-PAW is used
to simulate the adsorption and reduction process of nitrogen molecules.

During electrochemical interfacial reactions, the interface is typically connected to an external electrode with a
constant electrode potential. To ensure that the electronic chemical potential equilibrates with the external electrode
potential, meaning the grand canonical ensemble for electrons, there will be an influx and outflux of electrons in the
actual system. Traditional first-principles calculations are usually performed under the canonical ensemble, i.e., under
the condition of charge conservation, and thus cannot accurately describe electrochemical interfacial reactions. We
will refer to the calculation model expanded under charge conservation as the constant charge model (CCM).

Since the constant charge model is not suitable for handling electrochemical interface problems, we can adopt first-
principles calculations expanded in the electronic grand canonical ensemble. This calculation method is also known as
the fixed potential method/constant potential method. In this case, we will refer to the fixed potential calculation model
as the constant potential model (CPM).

3.4.1 Flow Calculation Procedure and Input Files
This example simulates the adsorption and reduction of nitrogen molecules on a carbon-supported transition metal

Ru single atom catalyst using DS-PAW. The simulated reaction is the adsorption of nitrogen molecules on a carbon-
supported Ru single atom, which can be simplified as: (Ru−N4) +N2 = (Ru−N4 −N2). Three different models,
CCM_vacuum, CCM_water, and CPM_water, are used in the calculation. The entire calculation procedure can be
roughly divided into four steps, detailed as follows:

3.4.1.1 Build the model

The models include: (a) a carbon-supported Ru atom model (Ru−N4), (b) a single N2 molecule model, and (c)
a carbon-supported Ru atom model with adsorbed N2 molecule (Ru − N4 − N2). The model structures are shown
below:

3.4.1.2 Relaxation Structure Relaxation

Perform structural relaxation on the constructed structure to obtain a stable structure. Core parameters required
for structural relaxation in DS-PAW:

3.4. Ru−N4 Computational Electrocatalysis of Nitrogen Reduction Reaction 99

DS-PAW Manual

relax.max = 200 # Specify the maximum number of ionic steps for␣
↪→structure relaxation
relax.freedom = atom #Specify the degree of freedom for structural␣
↪→relaxation
relax.convergence = 0.02 #Specifies the convergence criterion for atomic forces␣
↪→during structural relaxation
relax.methods = CG # Conjugate gradient method is specified for␣
↪→structural relaxation.

3.4.1.3 Energy Calculation

Energy calculations were performed under different model conditions to obtain the energies of stable configura-
tions. The results are presented below, categorized by model.

CCM_vacuum

Standard scf calculation under vacuum layer to obtain the energy under the CCM_vacuum model. The core
parameters required for a single point energy calculation in DS-PAW are listed below:

task = scf

Self-consistent field calculation related
cal.methods = 1 #Specifies the self-consistent electronic part␣
↪→optimization method as BD (block Davidson) method
cal.smearing = 1 # Specifies Gaussian smearing to set the fractional␣
↪→occupation of each wavefunction
cal.k_sampling = G #Specifies the method for generating the Brillouin␣
↪→zone k-point grid
cal.kpoints = [2, 2, 1] #Specifies the size of the k-point grid sampling in␣
↪→the Brillouin zone

cal.cutoffFactor = 1.0 # Specifies the coefficient for the plane-wave basis␣
↪→cutoff energy parameter cal.cutoff

corr.VDW = true # Specifies that van der Waals correction calculation␣
↪→is enabled.
corr.VDWType = D2G #Specifies the Grimme's DFT-D2 method for van der Waals␣
↪→correction

CCM_water

In the CCM model, implicit solvation models can also be used to consider solvent effects. Here, we take an
aqueous solution as an example and list the core parameters that need to be set to introduce the solvation model in the
SCF calculation using DS-PAW:

task = scf

Solvation model related
sys.sol = true # Specify whether to apply the implicit solvation␣
↪→model, true means enabled.
sys.solEpsilon = 78.4 # Specify the dielectric constant of the solvent,␣

(continues on next page)

100 3. Application Cases

DS-PAW Manual

(continued from previous page)

↪→78.4 for water
sys.solLambdaD = 3.04 # Specify the Debye length in the Poisson-
↪→Boltzmann equation, in Å
sys.solTAU = 0 # Specify the magnitude of the effective␣
↪→interfacial tension per unit area, in eV/Å^2
io.boundCharge = false # Specify whether to output the solvent-bound␣
↪→charge density file, false means off.

CPM_water

In DS-PAW, the energy under the CPM model can be obtained by using the fixed potential method. In the newly
released 2023A version, the fixed potential calculation must introduce a solvation model. Here are the core parameters
for fixed potential calculations in an implicit aqueous environment using DS-PAW:

task = scf
Solvent model related
sys.sol = true # Specify whether to apply the implicit solvation␣
↪→model, true means enabled.
sys.solEpsilon = 78.4 # Specifies the dielectric constant of the␣
↪→solvent, with a default value of 78.4 for water.
sys.solLambdaD = 3.04 #Specifies the Debye length in the Poisson-
↪→Boltzmann equation, in Å
sys.solTAU = 0 # Specifies the effective interfacial tension per␣
↪→unit area, in eV/Å^2
io.boundCharge = false # Specifies whether to output the solvent bound␣
↪→charge density file, false means off

Related to fixed potential settings
sys.fixedP = true # Specifies whether to enable fixed potential␣
↪→calculation, true means enabled
sys.fixedPConvergence = 0.01 # Specifies the convergence criterion for the␣
↪→fixed potential calculation. The calculation ends when the delta_electron between two␣
↪→self-consistent calculations is less than the convergence criterion.
sys.fixedPMaxIter = 60 #Specify the maximum number of iterations for␣
↪→fixed potential calculation.
sys.fixedPPotential = 0 # Specifies the target electrode potential value␣
↪→for the fixed potential calculation, using SHE as the reference electrode potential by␣
↪→default.
sys.fixedPType = SHE # Specifies the potential type for the potential␣
↪→value given by sys.fixedPPotential, supporting SHE (Standard Hydrogen Electrode) and␣
↪→PZC (Potential of Zero Charge)

3.4.1.4 ReactionEnergy Calculation

This example selects three different computational models. First, the adsorption reaction equations for each
model are introduced:

CCM_vacuum

In this model, the adsorption reaction can be written as:

(Ru−N4) +N2(idealgas) = (Ru−N4−N2)

3.4. Ru−N4 Computational Electrocatalysis of Nitrogen Reduction Reaction 101

DS-PAW Manual

We define ∆E as the reaction energy, and the calculation expression for the reaction energy is:

∆E = E0(Ru−N4−N2)− E0(Ru−N4)− E0(N2)

where E0 corresponds to the total energy of the system in the vacuum model (σ→0), which can be obtained from
the self-consistent calculation results in the scf.h5 or system.json file by searching for the keyword TotalEnergy0.

CCM_water

Under this model, the adsorption reaction equation can be written as:

(Ru−N4)(inwater) +N2(idealgas) = (Ru−N4−N2)(inwater)

∆E = E0(Ru−N4−N2)− E0(Ru−N4)− E0(N2)

Where, E0 corresponds to the total energy of the system under the model of aqueous solution immersion (σ →0),
this value can be obtained from the self-consistent field calculation, specifically from the scf.h5 or system.json file, by
searching for the keyword TotalEnergy0.

CPM_water

The reaction process simulated in this model is the adsorption of N2 in the gas phase on a catalyst surface wetted
by an aqueous solution and in contact with a 0V vs. SHE (Standard Hydrogen Electrode) electrode. Two different
adsorption reaction equations can be written for this process. For ease of description, we define the following
physical quantity symbols:

• ne0 : Number of core electrons in the neutral system.

• ne : Total number of electrons in the system when the system voltage is set (value set by sys.fixedPPotential,
corresponding to 0 V in this example)

• dne : The charge of the system at the set system voltage: dne = ne− ne0

• µe : Electronic chemical potential of the system, with the potential zero point at the bulk solution (i.e., the
potential value at the lowest charge density point obtained from DFT calculations)

• ∆e : Difference in the number of valence electrons between the adsorbed system (eAB) and the sum of valence
electrons of the substrate and adsorbate (eA+eB).

• Ω0 : grand total energy(sigma→0): the total energy of the system in the grand canonical ensemble of electrons,
which is expressed as: Ω0 = E0− dne ∗ µe

In this case, the adsorption reaction formula under the CPM_water model can be written as follows:

Method 1, considering ∆e in the reaction equation, the adsorption reaction can be written as:

Ru−N4(0V vs.SHE) +N2(idealgas) = Ru−N4−N2(0V vs.SHE)−∆e

∆E = E0(Ru−N4−N2)−∆e ∗ µe − E0(Ru−N4)− E0(N2)

The values of E0 can be obtained from the self-consistent calculation results in the scf.h5 or system.json file, by
searching for the keyword TotalEnergy0.

The values of ne and µe can be obtained from the self-consistent calculation results in the DS-PAW.log file (or
scf.h5 or system.json), by searching for the keywords Electron and Chemical Potential(electron) under the last LOOP.

Method two, considering the total energy of the system Ω0 in the grand canonical ensemble of electrons.

Since the constant potential calculation simulates the electronic grand canonical ensemble, the total energy E0 in
the reaction energy calculation should be replaced by Ω0. The adsorption reaction equation can be written as:

(Ru−N4)(0V vs.SHE) +N2(idealgas) = (Ru−N4−N2)(0V vs.SHE)

∆E = Ω0(Ru−N4−N2)− Ω0(Ru−N4)− Ω0(N2)

102 3. Application Cases

DS-PAW Manual

Where the value of Ω0 can be obtained from the self-consistent calculation in the DS-PAW.log file (or the scf.h5
or system.json files), by searching for the keyword Grand Total Energy in the last LOOP.

Since the potential of (Ru-N4) versus (Ru-N4-N2) is 0V vs. SHE, a fixed potential calculation at 0V is
performed for (Ru-N4) and (Ru-N4-N2). Data is extracted from the corresponding output files of DS-PAW, and
the following table is obtained, with energy units in eV:

system E0 nE0 ne dne µe Ω0

N2 -545.9393 10 / / / -545.9393
Ru-N4 -10572.2452 212 211.224 -0.776 -4.60223 -10575.81654
Ru-N4-N2 -11119.6117 222 221.229 -0.771 -4.60054 -11123.15868

Next, we substitute the data from Table 1 into the corresponding expressions for calculation:

Method 1 Considering ∆e in the reaction equation, the reaction energy calculation process is as follows:

Ru−N4(0V vs.SHE) +N2(idealgas) = Ru−N4−N2(0V vs.SHE)−∆e

∆E = E0(Ru−N4−N2)−∆e ∗ µe − E0(Ru−N4)− E0(N2)

= −11119.6117− (221.229− 211.224− 10) ∗ (−4.600)− (−10572.2452)− (−545.9393)

= −1.4042eV

Method 2 Consider the grand canonical potential Ω0 of the system, and the reaction energy calculation is as
follows:

(Ru−N4)(0V vs.SHE) +N2(idealgas) = (Ru−N4−N2)(0V vs.SHE)

∆E = Ω0(Ru−N4−N2)− Ω0(Ru−N4)− Ω0(N2)

= −11123.1586− (−10575.8165)− (−545.9393)

= −1.4027eV

The calculated adsorption energies obtained using the two methods are consistent. It is apparent that the reaction
energy under a fixed potential can be easily computed using Ω0 as defined in DS-PAW.

3.4.2 Run the program
After preparing the input files, upload the in files for structural relaxation calculations, energy calculations, and

fixed potential calculations, along with the structure.as structure file, to an environment with DS-PAW installed. Fol-
lowing the workflow, run the DS-PAW input.in command in multiple steps or submit job scripts to complete multiple
calculations.

3.4.3 ReactionEnergy Reaction Energy data analysis
Substituting the data from Table 1 into the adsorption reaction equations for the CCM_vacuum, CCM_water,

and CPM_water models, we calculate the reaction energies of the first three steps of the eNRR for the three models.
The results are shown in Table 2:

reaction/ ∆e (eV) CCM_vacuum CCM_water CPM_water
(Ru−N4) +N2 = (Ru−N4−N2) -1.3180 -1.3668 -1.4027
(Ru−N4−N2) + 0.5H2 = (Ru−N4−N2−H) 1.1355 1.0833 1.6511
(Ru−N4−N2−H) + 0.5H2 = (Ru−N4−N2−H2) -0.6833 -0.8030 -1.0305

The results are then plotted as a reaction coordinate curve, as shown in Figure 3:

3.4. Ru−N4 Computational Electrocatalysis of Nitrogen Reduction Reaction 103

DS-PAW Manual

3.5 ref References

104 3. Application Cases

4

Pseudopotential Explanation

DS-PAW currently supports three formats of pseudopotentials: .paw, .potcar, and .pawpsp. Users can specify
the pseudopotential type using the sys.pseudoType parameter.

4.1 hzw internal PAW pseudopotential
The DS-PAW defaults to using the hzw pseudopotentials (.paw), with the corresponding parameter sys.

pseudoType set to -1. In this case, DS-PAW will read the pseudopotential files from the installation path /pseu-
dopotential. Currently, the hzw pseudopotential library contains 72 elements, covering elements 1-86 in the periodic
table (lanthanides are currently supported only up to Lanthanum).

Regarding the accuracy of the hzw pseudopotential: the quick start guide and application examples perform
calculations based on multiple functionalities, and the results are in good agreement with the literature, which validates
that the hzw pseudopotential exhibits high accuracy in various functional calculations.

Furthermore, for the 72 elements in the pseudopotential library, calculations of equation of state fitting to obtain
the equilibrium cell volume were performed based on the 1.0 version pseudopotentials for the corresponding elemental
solids. The test objects included the 72 elements LDA and PBE functional pseudopotentials, totaling 144 pseudopoten-
tial files. The calculated volumes were compared with those obtained from the quantum chemistry software WIEN2k,
and the calculation errors are displayed in the periodic table as follows:

105

DS-PAW Manual

WIEN2k data source: https://github.com/abinit/pseudo_dojo

106 4. Pseudopotential Explanation

https://github.com/abinit/pseudo_dojo

DS-PAW Manual

Since WIEN2k website does not provide calculation data for La and At, the comparison data for La and At are
not shown in the table.

By comparison, the equilibrium volume obtained by fitting the equation of state in version 1.0 is basically con-
sistent with the results from WIEN2k software. The largest errors are for the element Zn, with errors of 2.58% and
3.31% for the LDA and PBE pseudopotentials, respectively. Optimization of the pseudopotentials for these two ele-
ments is underway. The errors for the remaining elements are basically controlled within 0.1%, which further validates
the overall accuracy of the pseudopotential library.

The 1.1 version of the pseudopotentials will be released on 2024/12/31. Performance data will be announced
shortly, stay tuned

4.2 VASP Pseudopotentials
DS-PAW provides an interface for using external POTCAR formatted pseudopotentials (.potcar), with the cor-

responding parameter sys.pseudoType set to 10. In this case, DS-PAW will read the pseudopotential files from
the default path ./. Due to copyright restrictions, DS-PAW only provides the interface for using VASP pseu-
dopotentials, and the pseudopotential files must be prepared by the user. When using this feature, users need to
modify the pseudopotential filenames accordingly. For example, if using the LDA pseudopotential for silicon, the cor-
responding POTCAR should be renamed to Si_LDA.potcar and placed in the specified directory (which can be set via
sys.pseudoPath).

4.3 GBRV Pseudopotential
DS-PAW provides an interface for using external gbrv-formatted pseudopotentials (.pawpsp), with the correspond-

ing parameter sys.pseudoType set to 11. In this case, DS-PAW will read the pseudopotential files from the default
path ./. The gbrv pseudopotential library is a freely available set of pseudopotentials, offering files for a total of 64 ele-
ments. The download website is http://www.physics.rutgers.edu/gbrv/. When downloading, please note that DS-PAW
supports the PAW format for Abinit. When using these pseudopotentials, the user needs to rename the pseudopotential
files accordingly. For example, if using the LDA pseudopotential for silicon, the corresponding pseudopotential file
should be renamed to Si_LDA.pawpsp and placed in the specified directory (which can be set via sys.pseudoPath).

4.4 Compare Pseudopotentials

4.4.1 Si band structure calculation
To compare the computational results of the three pseudopotentials, this section uses silicon (Si) as an example.

Band structure calculations were performed using all three pseudopotentials. The figure below shows a comparison of
the band structures. This comparison demonstrates a high degree of consistency among the three pseudopotentials in
describing the Si band structure, thus validating the accuracy of the hzw pseudopotential.

4.2. VASP Pseudopotentials 107

http://www.physics.rutgers.edu/gbrv/

DS-PAW Manual

*Data Source: The data for this figure was provided by a collaborator of Hongzhiwei.

4.4.2 Multi-system band gap calculation
This section presents band gap calculations using HSE06 with version 1.0 pseudopotentials for multiple systems.

The band gap values obtained are compared with those calculated using VASP and RESCU software, as reported in
the literature, along with those from DS-PAW calculations. The resulting figure (shown below) further validates the
accuracy of the hzw pseudopotentials.

108 4. Pseudopotential Explanation

DS-PAW Manual

*Data Source: https://doi.org/10.1103/PhysRevB.97.075139

4.4. Compare Pseudopotentials 109

https://doi.org/10.1103/PhysRevB.97.075139

DS-PAW Manual

110 4. Pseudopotential Explanation

5

Parameters Explanation

5.1 parameter parameter list
• task

• sys.pseudoType

• sys.pseudoPath

• sys.structure

• sys.symmetry

• sys.symmetryAccuracy

• sys.functional

• sys.spin

• sys.spinDiff

• sys.soi

• sys.electron

• sys.hybrid

• sys.hybridType

• sys.hybridAlpha

• sys.hybridOmega

• sys.sol

• sys.solEpsilon

• sys.solTAU

• sys.solLambdaD

111

DS-PAW Manual

• sys.fixedP

• sys.fixedPConvergence

• sys.fixedPPotential

• sys.fixedPType

• sys.fixedPMaxIter

• cal.iniCharge

• cal.iniWave

• cal.cutoffFactor

• cal.cutoff

• cal.methods

• cal.smearing

• cal.sigma

• cal.kpoints

• cal.ksamping

• cal.totalBands

• cal.opticalGrid

• cal.iniFixedP

• cal.FFTGrid

• cal.supGrid

• io.charge

• io.elf

• io.potential

• io.wave

• io.band

• io.dos

• io.optical

• io.bader

• io.polarization

• io.magProject

• io.boundCharge

• io.outJsonFile

• scf.max

• scf.min

112 5. Parameters Explanation

DS-PAW Manual

• scf.mixBeta

• scf.mixType

• scf.convergence

• scf.timeStep

• relax.max

• relax.freedom

• relax.methods

• relax.convergenceType

• relax.convergence

• relax.stepRange

• relax.pressure

• dos.range

• dos.resolution

• dos.project

• band.kpointsLabel

• band.kpointsCoord

• band.kpointsNumber

• band.project

• band.unfolding

• band.primitiveUVW

• band.EfShift

• optical.grid

• optical.KKEta

• optical.smearing

• optical.sigma

• optical.Emax

• potential.type

• corr.chargedSystem

• corr.dipol

5.1. parameter parameter list 113

DS-PAW Manual

• corr.dipolDirection

• corr.dftu

• corr.dftuForm

• corr.dftuElements

• corr.dftuOrbital

• corr.dftuU

• corr.dftuJ

• corr.VDW

• corr.VDWType

• corr.dipolEfield

• corr.dipolPosition

• corr.coreEnergy

• pcharge.bandIndex

• pcharge.kpointsIndex

• pcharge.sumK

• neb.springK

• neb.images

• neb.iniFin

• neb.method

• neb.convergenceType

• neb.convergence

• neb.stepRange

• neb.max

• neb.freedom

• frequency.dispOrder

• frequency.dispRange

• phonon.structureSize

• phonon.method

• phonon.type

• phonon.isDisplacement

• phonon.fdDisplacement

• phonon.iniPhonon

114 5. Parameters Explanation

DS-PAW Manual

• phonon.qsamping

• phonon.qpoints

• phonon.qpointsLabel

• phonon.qpointsCoord

• phonon.qpointsNumber

• phonon.primitiveUVW

• phonon.dosRange

• phonon.dosResolution

• phonon.dosSigma

• phonon.dfptEpsilon

• phonon.nac

• phonon.thermal

• phonon.thermalRange

• phonon.eigenVectors

• elastic.dispOrder

• elastic.dispRange

• aimd.ensemble

• aimd.thermostat

• aimd.andersenProb

• aimd.noseMass

• aimd.latticeFCoeff

• aimd.atomFCoeffElements

• aimd.atomFCoeffs

• aimd.latticeMass

• aimd.pressure

• aimd.iniTemp

• aimd.finTemp

• aimd.timeStep

• aimd.totalSteps

• wannier.functions

• wannier.wannMaxIter

• wannier.disMaxIter

• wannier.disWin

5.1. parameter parameter list 115

DS-PAW Manual

• wannier.disFrozWin

• wannier.disEfShift

• wannier.interpolatedBand

• wannier.kpointsLabel

• wannier.kpointsCoord

• wannier.kpointsNumber

• wannier.kmeshTolerance

• wannier.outStep

• WannProj

5.2 Detail parameter description
Parameter Name: task

Default: None

Optional values: scf/relax/dos/band/optical/potential/elf/pcharge/neb/frequency/phonon/
elastic/aimd/epsilon/wannier

Description: The task parameter specifies the calculation type and is mandatory. scf/relax can be a from-
scratch calculation (without setting cal.iniCharge and cal.iniWave) or import charge density or wave functions (by
setting cal.iniCharge and cal.iniWave). dos/band/optical/potential/elf are post-processing calculations
that require reading charge density. When importing charge density, you can optionally import the wave function (
cal.iniCharge must be set, cal.iniWave is optional);

Case: task = scf

Parameter Name: sys.pseudoType

Default: -1

Optional Values: -1/10/11

Description: The sys.pseudoType parameter sets the pseudopotential format required for DS-PAW calcula-
tions; -1 indicates the use of hzw pseudopotentials (.paw). Currently, DS-PAW supports hzw pseudopotentials for 72
elements: **H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn*.

Description: 10 represents external potcar format pseudopotentials (.potcar), and 11 represents external pawpsp
format pseudopotentials (.pawpsp).

Example: sys.pseudoType = -1

Parameter Name: sys.pseudoPath

Default: When sys.pseudoType = -1, this parameter does not need to be set, and the program can only read
pseudopotential files from the installation path /pseudopotential; sys.pseudoType = 10, the default value is ./; sys.
pseudoType = 11, the default value is ./;

116 5. Parameters Explanation

DS-PAW Manual

Description: The sys.pseudoPath parameter sets the path where the pseudopotentials required for DS-PAW
calculations are located; it generally does not need to be set manually, as it reads from the default storage path when
reading hzw pseudopotentials and defaults to the current path when reading external pseudopotentials.

Example: sys.pseudoPath = ./

Parameter Name: sys.structure

Default: atoms.as

Optional Values: .as / .h5 / .json

Description: The sys.structure parameter sets the path to the structure file, supporting .as, .h5, and .json
formats, with both absolute and relative paths allowed; DS-PAW generates the relax.h5 file by default after structural
relaxation, so you can directly set sys.structure = relax.h5. Read the relaxed structure for calculation; (.json
files are currently supported but not recommended, DS-PAW will completely eliminate the JSON format output in
iterative versions.)

Example: sys.structure = relax.h5

Parameter Name: sys.symmetry

Default value: true

Optional Values: true/false

Description: The parameter sys.symmetry indicates whether symmetry analysis is performed during DS-PAW
calculations;

Example: sys.symmetry = false

Parameter Name: sys.symmetryAccuracy

Default value: 1.0e-5

Allowed values: real

Description: The sys.symmetryAccuracy parameter specifies the accuracy of the symmetry analysis during DS-
PAW calculations;

Example: sys.symmetryAccuracy = 1.0e-6

Parameter Name: sys.functional

Default value: LDA

Options: LDA/PBE/REVPBE/RPBE/PBESOL/vdw-optPBE/vdw-optB88/vdw-optB86b/vdw-DF/vdw-
DF2/vdw-revDF2

Description: The sys.functional parameter specifies the functional type for DS-PAW. If sys.functional=LDA,
the LDA pseudopotentials in the specified path will be read; pseudopotentials starting with vdw correspond to van der
Waals correction methods for the functional.

Example: sys.functional = PBESOL

Parameter Name: sys.spin

5.2. Detail parameter description 117

DS-PAW Manual

Default value: none

Options: none/collinear/non-collinear

Description: The sys.spin parameter specifies the spin properties to be calculated; none indicates no spin,
collinear indicates collinear spin, and non-collinear indicates general spin;

Example: sys.spin = collinear

Parameter Name: sys.spinDiff

Default value: None

Optional Values: [0, ∞)

Description: Sets the difference in the number of up and down spin electrons;

Example: sys.spinDiff = 1

Parameter Name: sys.soi

Default: false

Possible values: true/false

Description: sys.soi indicates whether to consider spin-orbit coupling; spin-orbit coupling only takes effect
when sys.spin=non-collinear;

Example: sys.soi = true

Parameter Name: sys.electron

Default: The sum of all valence electrons

Optional values: real

Description: The sys.electron parameter specifies the total number of valence electrons; DS-PAW calculates
charged systems by introducing a background charge.

Case: sys.electron = 12

Parameter Name: sys.hybrid

Default: false

Allowed values: true/false

Description: The sys.hybrid parameter specifies whether to use a hybrid functional. true indicates the intro-
duction of a hybrid functional, while false indicates its absence. sys.hybrid is only effective when task = scf or
relax. When sys.hybrid is set to true, sys.functional is no longer effective.

Example: sys.hybrid = true

Parameter Name: sys.hybridType

Default value: HSE06

Possible values: PBE0/HSE03/HSE06/B3LYP

118 5. Parameters Explanation

DS-PAW Manual

Description: The sys.hybridType parameter specifies the type of hybrid functional; this parameter only takes
effect when sys.hybrid = true;

Example: sys.hybridType = HSE06

Parameter Name: sys.hybridAlpha

Default: When sys.hybridType = PBE0, the default value is 0.25, when sys.hybridType = HSE06, the
default value is 0.25, and when sys.hybridType = HSE03, the default value is 0.25.

Possible values: real

Description: The sys.hybridAlpha parameter specifies the coefficient of the exact exchange correlation func-
tional in the hybrid functional; this parameter is only effective when sys.hybrid = true;

Example: sys.hybridAlpha = 0.20

Parameter Name: sys.hybridOmega

Default: When sys.hybridType = PBE0, the default value is 0, when sys.hybridType = HSE06, the default
value is 0.2, and when sys.hybridType = HSE03, the default value is 0.3.

Possible values: real

Description: The sys.hybridOmega parameter specifies the screening coefficient for the hybrid functional; this
parameter is only active when sys.hybrid = true;

Example: sys.hybridOmega = 0.2

Parameter Name: sys.sol

Default: false

Allowed values: false/true

Description: The sys.sol parameter specifies whether to apply the implicit solvation model;

Example: sys.sol = true

Parameter Name: sys.solEpsilon

Default: 78.4

Optional values: real

Description: The sys.solEpsilon parameter specifies the solvent dielectric constant, with a default value of
the dielectric constant of water.

Example: sys.solEpsilon = 80

Parameter Name: sys.solTAU

Default: 5.25E-4

Possible values: real

Description: The sys.solTAU parameter specifies the magnitude of the effective interfacial tension per unit area,
in units of eV/Å^2. It is recommended that this parameter be set to a value less than 1e-3;

5.2. Detail parameter description 119

DS-PAW Manual

Example: sys.solTAU = 0

Parameter Name: sys.solLambdaD

Default value: None

Possible values: real

Description: The sys.solLambdaD parameter specifies the Debye length in the Poisson-Boltzmann equation, in
Å. If not set, the Poisson equation is used, and the screening effect of the double-layer ions on the electrostatic potential
is ignored.

Example: sys.solLambdaD = 3.04

Note

1. The Debye length, sys.solLambdaD, is calculated as λD =
√

εεokBT
2c0z2q2

The Debye length for a 1M aqueous solution of monovalent cations and anions (+/-1 charge) is: 3.04
Å

Parameter Name: sys.fixedP

Default value: false

Options: false/true

Description: The sys.fixedP parameter is a switch to control the fixed potential calculation, currently only com-
patible with task = scf.

Example: sys.fixedP = true

Parameter Name: sys.fixedPConvergence

Default value: 0.01

Allowed values: real

Description: The sys.fixedPConvergence parameter specifies the convergence accuracy for fixed potential
calculations. The calculation terminates when the difference (delta_electron) between two consecutive self-consistent
calculations is less than the convergence accuracy.

Example: sys.fixedPConvergence = 0.01

Parameter Name: sys.fixedPPotential

Default Value: None

Allowed values: real

Description: The sys.fixedPPotential parameter specifies the target electrode potential value for the fixed potential
calculation, with the default reference electrode potential being the Standard Hydrogen Electrode (SHE).

Example: sys.fixedPPotential = 5.4723

120 5. Parameters Explanation

DS-PAW Manual

Parameter Name: sys.fixedPType

Default value: SHE

Options: SHE/PZC

Description: The sys.fixedPType parameter specifies the type of potential for the potential values given by
sys.fixedPPotential. SHE uses the standard hydrogen electrode (SHE) potential as the reference value, while
PZC uses the zero charge potential as the reference value;

Example: sys.fixedPType = SHE

Parameter Name: sys.fixedPMaxIter

Default value: 60

Optional values: int

Description: The sys.fixedPMaxIter parameter specifies the maximum number of iterations for fixed potential
calculations.

Example: sys.fixedPMaxIter = 100

Parameter Name: cal.iniCharge

Default Value: None

Optional values: Path to the rho.bin file

Description: The cal.iniCharge parameter indicates the path to the rho.bin file obtained from a DS-PAW self-
consistent or structural relaxation calculation, which can be specified for subsequent calculations; When task=scf/relax,
if reading the previous charge density is not required, cal.iniCharge is not set, and if it is required to read the previous
charge density, cal.iniCharge is set. When task=dos/band/potential/elf, cal.iniCharge must be set to specify the path
to rho.bin. Both relative and absolute paths are supported.

Example: cal.iniCharge = ../scf/rho.bin

Parameter Name: cal.iniWave

Default value: None

Allowed value: Specify the path to wave.bin

Description: The cal.iniWave parameter indicates the path to the wave function file wave.bin obtained from
DS-PAW self-consistent or structure relaxation calculations, which can be used for subsequent calculations; if this
parameter is not set, it means that wave.bin will not be read; the file path supports both relative and absolute paths;

Example: cal.iniWave = ../scf/wave.bin

Parameter Name: cal.cutoffFactor

Default value: 1.0

Allowed value: real

Description: cal.cutoffFactor represents the coefficient for the cutoff energy parameter cal.cutoff. When
cal.cutoffFactor=1.5, the cutoff energy used in DS-PAW calculations is cal.cutoff*1.5. The pseudopotentials in the
DS-PAW2022A version have all been tested, and the default value of 1.0 for cutoffFactor satisfies most computational
requirements;

5.2. Detail parameter description 121

DS-PAW Manual

Example: cal.cutoffFactor = 1.0

Parameter Name: cal.cutoff

Default value: The maximum cutoff energy used in the pseudopotential for the current calculation;

Allowed value: real

Description: The cal.cutoff parameter represents the cutoff energy of plane waves used in the calculation by
the DS-PAW software. The built-in cutoff energy (ecutoff) for each pseudopotential file can be viewed in the /pseu-
dopotential directory, such as reading the ecutoff of O_PBE as 480 eV from the O_PBE.paw file.

Example: cal.cutoff = 480

Parameter Name: cal.methods

Default value: 1 (When sys.hybrid = true, the default value is 4)

Allowed value: 1/2/3/4/5

Description: cal.methods indicates the method used for the self-consistent electronic part optimization, where
1 represents the BD(block Davidson) method and 2 represents the RM(residual minimization) method; 3 rep-
resents the combination of the RM(residual minimization) method and the BD(block Davidson) method; 4
represents the damped MD (damped molecular dynamics) method; 5 represents the conjugated gradient (conju-
gate gradient) method; among which 4 and 5 can be used with hybrid functionals;

Example: cal.methods = 1

Parameter Name: cal.smearing

Default value: 1

Allowed value: 1/2/3/4

Description: cal.smearing specifies the method used to set partial occupancies for each wave function Gaussian
smearing/Fermi-smearing/Methfessel-Paxton order 1/tetrahedron method with Blochl corrections;

Example: cal.smearing = 2

Parameter Name: cal.sigma

Default value: 0.2

Allowed value: real

Description: cal.sigma represents the broadening when setting partial occupation numbers using finite temper-
ature methods;

Example: cal.sigma = 0.01

Parameter Name: cal.kpoints

Default value: [1,1,1]

Allowed value: 3*1 int array

Description: cal.kpoints specifies the sampling size of the k-point grid in the Brillouin zone for DS-PAW
settings;

122 5. Parameters Explanation

DS-PAW Manual

Example: cal.kpoints = [9,9,9]

Parameter Name: cal.ksamping

Default value: MP

Allowed value: MP/G

Description: cal.ksampling indicates the method for automatically generating the k-point grid in the Brillouin
zone by DS-PAW, Monhkorst-Pack method / Gamma centered method;

Example: cal.ksampling = G

Parameter Name: cal.totalBands

Default value: Related to the number of valence electrons in the system

Optional values: int

Description: cal.totalBands represents the total number of bands included in the DS-PAW calculation;

Example: cal.totalBands = 100

Parameter Name: cal.opticalGrid

Default value: 2000

Allowed Values: int

Description: cal.opticalGrid represents the number of grid points in the energy region when calculating optical
properties in DS-PAW. It only takes effect when io.optical is enabled.

Example: cal.opticalGrid = 2000

Parameter Name: cal.iniFixedP

Default value: None

Allowed value: The path to the h5 file output by the constant potential calculation

Description: The cal.iniFixedP specifies the path to the h5 file from the previous constant potential calcula-
tion, which DS-PAW reads to perform a continuation of the constant potential calculation;

Example: cal.iniFixedP = ./scf.h5

Parameter Name: cal.FFTGrid

Default value: Depends on the parameters cal.cutoff and cal.cutoffFactor

Allowed value: 3*1 int array

Description: cal.FFTGrid specifies the number of grid points along three lattice directions for the FFT grid of
the unit cell;

Example: cal.FFTGrid = [16,16,16]

Parameter Name: cal.supGrid

5.2. Detail parameter description 123

DS-PAW Manual

Default value: false

Allowed value: true/false

Description: The cal.supGrid is a switch to enable or disable the use of support FFTGrid, which can increase
the density of the FFT-Grid;

Example: cal.supGrid = true

Parameter Name: io.charge

Default value: true

Allowed value: true/false

Description: Controls whether to output the charge density files rho.bin and rho.h5; when io.charge=true, the
rho.bin and rho.h5 files are generated;

Example: io.charge = true

Parameter Name: io.elf

Default value: false

Allowed value: false/true

Description: Output ELF data results; this parameter takes effect when task=scf/relax; does not support setting
sys.spin=non-collinear simultaneously

Example: io.elf = true

Parameter Name: io.potential

Default value: false

Allowed value: false/true

Description: Output data results of the potential function; this parameter is effective when task=SCF/relax; when
io.potential=true, you can choose potential.type to set the type of the output potential function;

Example: io.potential = true

Parameter Name: io.wave

Default value: true when task is wannier and wave.bin file is not read, false for other tasks

Allowed value: false/true

Description: Output the binary file of the wave function wave.bin; when io.wave=true, generate the wave.bin file;

Example: io.wave = true

Parameter Name: io.band

Default value: false

Allowed value: false/true

124 5. Parameters Explanation

DS-PAW Manual

Description: Whether to directly calculate the band switching when task=scf; when io.band=true, all band cal-
culation parameters take effect;

Example: io.band = true

Parameter Name: io.dos

Default value: false

Allowed value: false/true

Description: A switch to directly calculate the density of states when task=scf; when io.dos=true, all density of
states calculation parameters take effect;

Example: io.dos = true

Parameter Name: io.optical

Default value: false

Allowed value: false/true

Description: Controls whether to perform optical property calculations; io.optical=true is only effective when
task=scf is set, and when this parameter is active, the corresponding scf.h5 file will be written with optical property
data;

Example: io.optical = true

Parameter Name: io.bader

Default value: false

Allowed value: false/true

Description: Controls whether to perform Bader charge calculation; io.bader=true only takes effect when task=scf
is set, and when this parameter is active, the corresponding scf.h5 file will be written with Bader charge data;

Example: io.bader = true

Parameter Name: io.polarization

Default value: false

Allowed value: false/true

Description: Controls whether to perform iron polarization calculation; io.polarization=true only takes effect
when task=scf is set, and when this parameter is active, the corresponding scf.h5 file will be written with iron polar-
ization data;

Example: io.polarization = true

Parameter Name: io.magProject

Default value: true when sys.spin=collinear or sys.spin=non-collinear, false otherwise

Allowed value: false/true

5.2. Detail parameter description 125

DS-PAW Manual

Description: In magnetic moment calculations, controls whether to write projected magnetic moment data to the
corresponding h5 output file;

Example: io.magProject = true

Parameter Name: io.boundCharge

Default value: false

Allowed value: true/false

Description: Controls whether to output solvent bound charge density files when an implicit solvent model is
introduced;

Example: io.boundCharge = true

Parameter Name: io.outJsonFile

Default value: true

Allowed value: true/false

Description: Controls whether to output a JSON-formatted output file;

Example: io.outJsonFile = false

Parameter Name: scf.max

Default value: 60

Allowed value: int

Description: scf.max specifies the maximum number of electronic steps in a DS-PAW self-consistent field cal-
culation;

Example: scf.max = 100

Parameter Name: scf.min

Default value: 2

Allowed value: int

Description: scf.min represents the minimum number of electronic steps for self-consistent calculations in DS-
PAW;

Example: scf.min = 5

Parameter Name: scf.mixBeta

Default value: 0.4

Allowed value: real

Description: scf.mixBeta represents the Beta value of the electronic mixing algorithm used in DS-PAW self-
consistent calculations;

Example: scf.mixBeta = 0.2

126 5. Parameters Explanation

DS-PAW Manual

Parameter Name: scf.mixType

Default value: Pulay

Allowed value: Broyden/Kerker/Pulay

Description: scf.mixType specifies the type of electronic mixing algorithm used in DS-PAW self-consistent
calculations, currently supporting the Broyden method, Kerker method, and Pulay method;

Example: scf.mixType = Pulay

Parameter Name: scf.convergence

Default value: 1.0e-4

Allowed value: real

Description: scf.convergence specifies the energy convergence criterion for the DS-PAW self-consistent cal-
culation;

Example: scf.convergence = 1.0e-5

Parameter Name: scf.timeStep

Default value: 0.4

Allowed value: real

Description: The parameter scf.timeStep controls the step size when cal.methods=4/5; When cal.methods
= 4, scf.timeStep determines the MD step size; a too small step size will increase the number of steps required for
convergence, while a too large step size may cause the scf calculation to diverge. When cal.methods = 5, scf.timeStep
determines the initial step size; a too large step size may cause the scf calculation to become unstable, while a too small
step size may result in insufficient accuracy.

Example: scf.timeStep = 0.4

Parameter Name: relax.max

Default value: 60

Allowed value: int

Description: relax.max represents the maximum number of ion steps during the relaxation of the DS-PAW
structure;

Example: relax.max = 300

Parameter Name: relax.freedom

Default value: atom

Allowed value: atom/volume/all/atom&shape

Description: relax.freedom specifies the degrees of freedom for the relaxation of the DS-PAW structure; atom
indicates relaxation of only atomic positions; volume indicates relaxation of only the lattice volume; all indicates
relaxation of atomic positions, lattice volume, and unit cell shape; atom&shape indicates relaxation of atomic positions
and lattice shape;

5.2. Detail parameter description 127

DS-PAW Manual

Example: relax.freedom = atom

Parameter Name: relax.methods

Default value: CG

Allowed value: CG/DMD/QN

Description: relax.methods specifies the relaxation method for the DS-PAW structure, where CG stands for
Conjugate Gradient method; DMD for Damped Molecular Dynamics method; QN for Quasi-Newton method;

Example: relax.methods = CG

Parameter Name: relax.convergenceType

Default value: force

Allowed value: force/energy

Description: The relax.convergenceType specifies the choice of convergence criterion in the relaxation cal-
culation, with options being force or energy as the convergence standard;

Example: relax.convergenceType = energy

Parameter Name: relax.convergence

Default value: 0.05/1e-4

Allowed value: real

Description: relax.convergence specifies the convergence criterion for atomic forces or energy during the
relaxation of a DS-PAW structure; the default value is 0.05 when forces are used as the convergence standard, and 1e-4
when energy is used as the convergence standard;

Example: relax.convergence = 0.01

Parameter Name: relax.stepRange

Default value: 0.5

Allowed value: real

Description: relax.stepRange represents the scaling constant within the structural relaxation;

Example: relax.stepRange = 0.2

Parameter Name: relax.pressure

Default value: 0

Allowed value: real

Description: relax.pressure indicates that the structure optimization will be performed under a specific ex-
ternal pressure, and can also be used to correct Pullay stress error, unit kbar ;

Example: relax.pressure = 100

128 5. Parameters Explanation

DS-PAW Manual

Parameter Name: dos.range

Default value: [-10,10]

Allowed value: 2*1 array

Description: dos.range indicates the energy interval for density of states calculation when task=dos;

Example: dos.range = [-15,15]

Parameter Name: dos.resolution

Default value: 0.05

Allowed value: real

Description: dos.resolution indicates the energy interval accuracy for density of states calculation when
task=dos;

Example: dos.resolution = 0.1

Parameter Name: dos.project

Default value: false

Allowed value: false/true

Description: The dos.project parameter controls the projected density of states; when task=dos, dos.project is
false/true; if projection is enabled, dos.project = true, and the projected density of states information will be saved in
the dos.h5 file; if projection is not enabled, dos.project = false;

Example: dos.project = true

Parameter Name: band.kpointsLabel

Default value: None

Allowed value: n*1 string array

Description: This parameter is only effective when task=band; band.kpointsLabel is the high-symmetry point
labels for band calculation, the size of the band.kpointsLabel array is 1/3 of the size of the band.kpointsCoord
array; larger by 1 than the size of the band.kpointsNumber array;

Example: band.kpointsLabel = [G,M,K,G]

Parameter Name: band.kpointsCoord

Default value: None

Allowed value: 3n*1 real array

Description: This parameter is only effective when task=band; band.kpointsCoord represents the fractional
coordinates of high-symmetry points during band calculation, and the data size of band.kpointsCoord is 3 times the
data size of band.kpointsLabel;

Example: band.kpointsCoord = [0, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0.5, 0, 0, 0]

Parameter Name: band.kpointsNumber

5.2. Detail parameter description 129

DS-PAW Manual

Default value: None

Allowed value: (n-1)*1 int array/ 1*1 int array

Description: This parameter is only effective during band calculations; band.kpointsNumber is the number of
K points between each pair of adjacent high-symmetry points

• – When the parameter length is (n-1)*1 int array, band.kpointsNumber is one less in size than the data size
of band.kpointsLabel

• – When the parameter length is a 1*1 int array, it performs equal-density point distribution for all high-
symmetry points based on the given parameter; the final number of equally-distributed points can be read
from band.kpointsNumber in DS-PAW.log;

Example: band.kpointsNumber = [100]

Parameter Name: band.project

Default value: false

Allowed value: false/true

Description: The band.project parameter controls the projection of bands; when task= band, if band.project
is set to true, the projection band information will be saved in the band.h5 file; if projection is not enabled, set
band.project = false;

Example: band.project = true

Parameter Name: band.unfolding

Default value: false

Allowed value: false/true

Description: The band.unfolding parameter is a switch for band unfolding; when task= band, band.
unfolding takes effect (io.band = true does not take effect), and if band.unfolding is set to true, the unfolded
band data will be saved in the band.h5 file;

Example: task = band, band.unfolding = true

Parameter Name: band.primitiveUVW

Default value: None

Allowed value: 9*1 real array

Description: The band.primitiveUVW ensures that when performing folding calculations, the product of the
lattice constants of the supercell multiplied by the UVW coefficients equals the lattice vectors of the primitive cell;

Example: band.primitiveUVW = [0.0, 0.5, 0.5, 0.5, 0.0, 0.5, 0.5, 0.5, 0.0]

Parameter Name: band.EfShift

Default value: true when task=band, false for other tasks

Allowed value: true/false

Description: The band.EfShift parameter indicates whether to read EFermi from rho.bin when task=band, and
it takes effect only when task=band;

130 5. Parameters Explanation

DS-PAW Manual

Example: band.EfShift = true

Parameter Name: optical.grid

Default value: 2000

Allowed value: int

Description: optical.grid indicates the number of grid points in the energy region when calculating optical
properties with DS-PAW, and takes effect only when io.optical and task=optical are specified;

Example: optical.grid = 2000

Parameter Name: optical.KKEta

Default value: EnergyAxe resolution*0.99

Allowed value: real

Description: optical.KKEta is the η value used when solving the real part of the dielectric function using
the Kramers-Kroning relationship. Using the default value may result in very rough results. Increasing η can make
the results smoother, but it may introduce some errors in the calculation of the dielectric function values in the low-
frequency region. It is not recommended to use excessively large η values; instead, it is suggested to increase the
number of grid points (optical.grid) to achieve smoother results. (In older versions without this parameter, the η value
was 0.1)

Example: optical.KKEta = 0.1

Parameter Name: optical.smearing

Default value: 1

Allowed value: 1/2/3

Description: optical.smearing determines the smearing algorithm for energy broadening during optical cal-
culations. 1/2/3 correspond to Gaussian smearing/Fermi smearing/Methfessel-Paxton order 1;

Example: optical.smearing = 1

Parameter Name: optical.sigma

Default value: 0.05

Allowed value: real

Description: optical.sigma determines the width of the broadening when using the expansion algorithm de-
termined by optical.smearing;

Example: optical.sigma = 0.05

Parameter Name: optical.Emax

Default value: Maximum energy of the unoccupied state*1.2 (eV)

Allowed value: real

Description: optical.Emax determines the maximum value of frequency (EnergyAxe) during optical calcula-
tions;

5.2. Detail parameter description 131

DS-PAW Manual

Example: optical.Emax = 20

Parameter Name: potential.type

Default value: total

Allowed value: total/hartree/all

Description: potential.type controls the output type of the electrostatic potential; when potential.type =
hartree, the potental.h5 file writes the electrostatic potential (sum of ionic potential and Hartree potential), when
potential.type = total, the potental.h5 file writes the local potential (sum of electrostatic potential and exchange-
correlation potential) data, when potential.type = all, the potental.h5 file writes both types of potential;

Example: potential.type = all

Parameter Name: corr.chargedSystem

Default value: false

Allowed value: false/true

Description: corr.chargedSystem indicates whether the energy of charged block systems can be corrected
when calculating charged systems;

Example: corr.chargedSystem = true

Parameter Name: corr.dipol

Default value: false

Allowed value: false/true

Description: corr.dipol indicates the introduction of an artificial potential field (dipole correction) to address
the issue of uneven vacuum potential;

Example: corr.dipol = true

Parameter Name: corr.dipolDirection

Default value: None

Allowed value: a/b/c/all

Description: corr.dipolDirection indicates the direction of the dipole correction, where a/b/c represent the
directions of the three lattice constants, and all indicates all directions, applicable for isolated molecule calculations;

Example: corr.dipolDirection = c

Parameter Name: corr.dipolPosition

Default value: None

Allowed value: 3*1 real array

Description: corr.dipolPosition represents the relative position of the dipole in the unit cell;

Example: corr.dipolPosition = [0.5, 0.5, 0.5]

132 5. Parameters Explanation

DS-PAW Manual

Parameter Name: corr.dipolEfield

Default value: 0

Allowed value: real

Description: corr.dipolEfield represents the magnitude of the external electric field, in units of eV/Å, and
this parameter is only effective when corr.dipol = true and corr.dipolDirection is set;

Example: corr.dipolEfield = 0.05

Parameter Name: corr.dftu

Default value: false

Allowed value: false/true

Description: corr.dftu indicates whether to introduce Hubbard U to handle strongly correlated systems;

Example: corr.dftu = true

Parameter Name: corr.dftuForm

Default value: 2

Allowed value: 1/2

Description: corr.dftuForm indicates which DFT+U method to select. 1 corresponds to the DFT+U+J method
(Liechtensteins formulation), 2 corresponds to the DFT+U method (Dudarevs formulation);

Example: corr.dftuForm = 2

Parameter Name: corr.dftuElements

Default value: None

Allowed value: n*1 string array

Description: corr.dftuElements indicates the elements that require the addition of U;

Example: corr.dftuElements = [Ni,O]

Parameter Name: corr.dftuOrbital

Default value: None

Allowed value: n*1 string array

Description: corr.dftuOrbital indicates the orbitals that need to be added U on the selected elements;

Example: corr.dftuOrbital = [d,s]

Parameter Name: corr.dftuU

Default value: None

Allowed value: n*1 real array

Description: corr.dftuU indicates the size of the U value to be added to the selected orbit on the selected
element;

5.2. Detail parameter description 133

DS-PAW Manual

Example: corr.dftuU = [8,1]

Parameter Name: corr.dftuJ

Default value: None

Allowed value: n*1 real array

Description: corr.dftuJ indicates the size of the J value to be added to the selected orbit on the selected element;

Example: corr.dftuJ = [0.95,0]

Parameter Name: corr.VDW

Default value: false

Allowed value: false/true

Description: corr.VDW indicates whether to introduce van der Waals corrections;

Example: corr.VDW = true

Parameter Name: corr.VDWType

Default value: D2G

Allowed value: D2G/D3G/D3BJ

Description: corr.VDWType indicates which van der Waals correction is used, D2G represents DFT-D2 of
Grimmes method; D3G represents DFT-D3 of Grimmes method; D3BJ represents DFT-D3 with Becke-Jonson damp-
ing method;

Example: corr.VDWType = D3G

Parameter Name: corr.coreEnergy

Default value: false

Allowed value: true/false

Description: corr.coreEnergy indicates whether to use the initial state approximation to calculate the core
electron energy levels;

Example: corr.coreEnergy = true

Parameter Name: pcharge.bandIndex

Default value: None

Allowed value: n*1 int array

Description: pcharge.bandIndex indicates the indices of bands used in the partial charge density calculation;

Example: pcharge.bandIndex = [1,3,4]

Parameter Name: pcharge.kpointsIndex

134 5. Parameters Explanation

DS-PAW Manual

Default value: None

Allowed value: n*1 int array

Description: pcharge.kpointsIndex represents the indices of K points during partial charge density calcula-
tion;

Example: pcharge.kpointsIndex = [12,14]

Parameter Name: pcharge.sumK

Default value: false

Allowed value: false/true

Description: pcharge.sumK indicates whether to sum data of all K points and different bands after calculating
the partial charge density and save the data.

Example: pcharge.sumK = true

Parameter Name: neb.springK

Default value: 5

Allowed value: real

Description: neb.springK represents the spring constant K in transition state calculations;

Example: neb.springK = 7

Parameter Name: neb.images

Default value: None

Allowed value: int

Description: neb.images represents the number of intermediate structures in transition state calculations;

Example: neb.images = 5

Parameter Name: neb.iniFin

Default value: false

Allowed value: true/false

Description: neb.iniFin indicates whether the initial and final structures are subjected to self-consistent calcu-
lations during transition state calculations, where true means self-consistent calculations are performed;

Example: neb.iniFin = true

Parameter Name: neb.method

Default value: QN

Allowed value: LBFGS/CG/QM/QN/QM2/FIRE

Description: neb.method specifies the algorithm used in transition state calculations;

Example: neb.method = QN

5.2. Detail parameter description 135

DS-PAW Manual

Parameter Name: neb.freedom

Default value: atom

Allowed value: atom/all

Description: neb.freedom represents the degrees of freedom for relaxation in transition state calculations, where
you can choose to relax only atoms or allow the unit cell to be relaxed;

Example: neb.freedom = all

Parameter Name: neb.convergenceType

Default value: force

Allowed value: force/energy

Description: The neb.convergenceType specifies the convergence criterion in transition state calculations,
where only force can be used as the convergence criterion when using LBFGS/CG/QM2/FIRE methods;

Example: neb.convergenceType = energy

Parameter Name: neb.convergence

Default value: 0.1/1e-4

Allowed value: real

Description: neb.convergence specifies the convergence criterion for forces or energies in transition state cal-
culations; the default value is 0.1 when force is chosen as the convergence criterion, and 1e-4 when energy is chosen
as the convergence criterion;

Example: neb.convergence = 0.01

Parameter Name: neb.stepRange

Default value: 0.1

Allowed value: real

Description: neb.stepRange indicates the step size for structural relaxation during transition state calculations;

Example: neb.stepRange = 0.01

Parameter Name: neb.max

Default value: 60

Allowed value: int

Description: neb.max specifies the maximum number of steps for structure relaxation in transition state calcu-
lations;

Example: neb.max = 300

Parameter Name: frequency.dispOrder

136 5. Parameters Explanation

DS-PAW Manual

Default value: 1

Allowed value: 1/2

Description: frequency.dispOrder indicates the method of atomic vibration during frequency calculation,
where 1 corresponds to the central difference method with two vibration modes, and 2 corresponds to four vibration
modes;

Example: frequency.dispOrder = 2

Parameter Name: frequency.dispRange

Default value: 0.01

Allowed value: real

Description: frequency.dispRange represents the atomic displacement during frequency calculation;

Example: frequency.dispRange = 0.05

Parameter Name: phonon.structureSize

Default value: [1,1,1]

Allowed value: 3*1 int array

Description: phonon.structureSize indicates the size of the supercell used in the phonon calculation;

Example: phonon.structureSize = [2,2,2]

Parameter Name: phonon.method

Default value: fd

Allowed value: fd/dfpt

Description: The phonon.method specifies the method for phonon calculations; fd refers to the finite displace-
ment method; dfpt refers to the density functional perturbation theory method;

Example: phonon.method = dfpt

Parameter Name: phonon.type

Default value: phonon

Allowed value: phonon/band/dos/bandDos

Description: phonon.type specifies which properties of phonons are calculated: phonon corresponds to cal-
culating the force constant matrix or force set; band corresponds to calculating phonon bands; dos corresponds to
calculating phonon density of states; bandDos corresponds to calculating both phonon bands and phonon density of
states;

Example: phonon.type = bandDos

Parameter Name: phonon.isDisplacement

Default value: true

Allowed value: true/false

5.2. Detail parameter description 137

DS-PAW Manual

Description: phonon.isDisplacement indicates whether the displacement is calculated during the phonon
calculation using the fd method;

Example: phonon.isDisplacement = true

Parameter Name: phonon.fdDisplacement

Default value: 0.01

Allowed value: real

Description: phonon.fdDisplacement represents the magnitude of displacement used in the phonon calcula-
tion by the fd (finite difference) method;

Example: phonon.fdDisplacement = 0.05

Parameter Name: phonon.iniPhonon

Default value: None

Allowed value: Specify the path to phonon.h5

Description: phonon.iniPhonon specifies the path for reading the force constant matrix or force set during
phonon band or density of states calculations;

Example: phonon.iniPhonon = ../phonon/phonon.h5

Parameter Name: phonon.qsamping

Default value: MP

Allowed value: MP/G

Description: phonon.qsamping specifies the q-point sampling method in the Brillouin zone for phonon calcu-
lations, either the Monkhorst-Pack method or the Gamma centered method;

Example: phonon.qsamping = G

Parameter Name: phonon.qpoints

Default value: [1,1,1]

Allowed value: 3*1 int array

Description: phonon.qpoints represents the sampling size of the Q-space grid during phonon calculations;

Example: phonon.qpoints = [9,9,9]

Parameter Name: phonon.qpointsLabel

Default value: None

Allowed value: n*1 string array

Description: phonon.qpointsLabel indicates the labels of high-symmetry points during phonon band structure
calculations;

Example: phonon.qpointsLabel = [G,M,K,G]

138 5. Parameters Explanation

DS-PAW Manual

Parameter Name: phonon.qpointsCoord

Default value: None

Allowed value: 3n*1 real array

Description: phonon.qpointsCoord represents the coordinates of high-symmetry points during phonon band
structure calculations;

Example: phonon.qpointsCoord = [0, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0.5, 0, 0, 0]

Parameter Name: phonon.qpointsNumber

Default value: 51

Allowed value: int

Description: phonon.qpointsNumber represents the number of q-points between adjacent high-symmetry
points in the phonon band;

Example: phonon.qpointsNumber = 100

Parameter Name: phonon.primitiveUVW

Default value: [1,0,0,0,1,0,0,0,1]

Allowed value: 9*1 real array

Description: For the phonon band calculation, the lattice vectors of the primitive cell are obtained by multiplying
the lattice constants of the supercell by the UVW coefficients.

Example: phonon.primitiveUVW = [1,0,0,0,1,0,0,0,1]

Parameter Name: phonon.dosRange

Default value: [0, 40]

Allowed value: 2*1 real array

Description: phonon.dosRange indicates the energy range for the phonon density of states calculation;

Example: phonon.dosRange = [-15,15]

Parameter Name: phonon.dosResolution

Default value: 0.1

Allowed value: real

Description: phonon.dosResolution indicates the energy interval accuracy for the phonon density of states
calculation;

Example: phonon.dosResolution = 0.01

Parameter Name: phonon.dosSigma

Default value: 0.1

5.2. Detail parameter description 139

DS-PAW Manual

Allowed value: real

Description: phonon.dosSigma represents the broadening used in the phonon density of states calculation;

Example: phonon.dosSigma = 0.1

Parameter Name: phonon.dfptEpsilon

Default value: false

Allowed value: false/true

Description: phonon.dfptEpsilon is a switch that controls the calculation of dielectric constant when
phonon.method = dfpt;

Example: phonon.dfptEpsilon = true

Parameter Name: phonon.nac

Default value: true when phonon.dfptEpsilon = true

Allowed value: false/true

Description: When phonon.dfptEpsilon = true, if calculating band structure and density of states, phonon.nac is
used as a switch for whether to use non-analytical term correction;

Example: phonon.nac = false

Parameter Name: phonon.thermal

Default value: false

Allowed value: false/true

Description: phonon.thermal is a switch that controls the calculation of thermodynamic properties when
task=phonon and phonon.type=dos or phonon.type=bandDos;

Example: phonon.thermal = true

Parameter Name: phonon.thermalRange

Default value: [0,1200,10]

Allowed value: 3*1 real array

Description: phonon.thermalRange [min_T, max_T, δ T] specifies the temperature range for thermodynamic
property calculations and the data storage interval;

Example: phonon.thermalRange = [0,1000,10]

Parameter Name: phonon.eigenVectors

Default value: false

Allowed value: false/true

Description: phonon.eigenVectors controls whether to output the eigenvectors of the dynamical matrix. When
phonon.eigenVectors=true, EigenVectors output will be added under the BandInfo section in the phonon output file.
EigenVectors>Size provides the size of the eigenvector matrix of the dynamical matrix (size: [NumberOfQPoints,

140 5. Parameters Explanation

DS-PAW Manual

(NumberOfAtoms*3), NumberOfBand, (real, imag)]), EigenVectors>RowMajor indicates whether to output in row-
major order, and EigenVectors>Values gives the values of the eigenvector matrix;

Example: phonon.eigenVectors = true

Parameter Name: elastic.dispOrder

Default value: 1

Allowed value: 1/2

Description: elastic.dispOrder indicates the method of atomic vibration during elastic constant calculation,
where 1 corresponds to the central difference method (with two vibration modes), and 2 corresponds to the four vibration
modes;

Example: elastic.dispOrder = 1

Parameter Name: elastic.dispRange

Default value: 0.01

Allowed value: real

Description: elastic.dispRange indicates the atomic displacement used in the calculation of elastic constants;

Example: elastic.dispRange = 0.05

Parameter Name: aimd.ensemble

Default value: NVE

Allowed value: NVE/NVT/NPT/NPH/SA

Description: aimd.ensemble indicates the ensemble used in molecular dynamics simulations; SA is an abbre-
viation for Simulated Annealing, corresponding to the simulation annealing process;

Example: aimd.ensemble = NVE

Parameter Name: aimd.thermostat

Default value: Depends on aimd.ensemble

Allowed value: andersen/noseHoover/langevin

Description: aimd.thermostat specifies the thermostat or barostat used in molecular dynamics simulations;

Example: aimd.thermostat = andersen

Thermostat/Ensemble NVE NVT NPT NPH SA
andersen compatible* compatible incompatible incompatible incompatible
noseHoover incompatible compatible* incompatible incompatible incompatible
langevin incompatible compatible compatible* compatible* incompatible

Note: * denotes default thermostat

5.2. Detail parameter description 141

DS-PAW Manual

Parameter Name: aimd.andersenProb

Default value: When aimd.ensemble is NVE, the default value is 0

Allowed value: When NVE, Allowed value is 0; When NVT, Allowed value is real (0 < x <= 1)

Description: The aimd.andersenProb controls the probability that atoms experience collisions under the An-
dersen thermostat;

Example: aimd.andersenProb = 0

Parameter Name: aimd.noseMass

Default value: 0

Allowed value: real (x >= 0)

Description: aimd.noseMass controls the effective mass of the Nose-Hoover thermostat;

Example: aimd.noseMass = 0

Parameter Name: aimd.latticeFCoeff

Default value: When aimd.ensemble is NPH, the default value is 0

Allowed value: 0 for NPH, real (x > 0) for NPT

Description: aimd.latticeFCoeff represents the magnitude of the lattice friction coefficient in the Langevin
thermostat under NPT/NPH ensembles, with units of ps-1;

Example: aimd.latticeFCoeff = 10

Parameter Name: aimd.atomFCoeffElements

Default value: None

Allowed value: n*1 string array

Description: aimd.atomFCoeffElements represents the element names considered as Langevin atoms when
using the Langevin thermostat. The naming convention is element name + underscore + custom field, such as Hf_1,
and the element name in the structure.as file needs to be synchronized;

Example: aimd.atomFCoeffElements = [Hf_1,O_1]

Parameter Name: aimd.atomFCoeffs

Default value: None

Allowed value: n*1 string array

Description: aimd.atomFCoeffs represents the friction coefficients for Langevin atoms when using the
Langevin thermostat, with units of ps-1. This value should correspond to the element names specified in aimd.
atomFCoeffElements. For example, it assigns a value of 10 to the Hf_1 atom and a value of 5 to the O_1 atom;

Example: aimd.atomFCoeffElements = [Hf_1,O_1], aimd.atomFCoeffs = [10,5]

142 5. Parameters Explanation

DS-PAW Manual

Parameter Name: aimd.latticeMass

Default value: 1000

Allowed value: real

Description: aimd.latticeMass represents the virtual mass of the cell degrees of freedom when using the
Langevin barostat for NPT/NPH simulations, with units amu;

Example: aimd.latticeMass = 1000

Parameter Name: aimd.pressure

Default value: 0

Allowed value: real

Description: aimd.pressure represents the target pressure value of the system during NPT/NPH simulations,
in units of kbar;

Example: aimd.pressure = 1000

Parameter Name: aimd.iniTemp

Default value: 0

Allowed value: real

Description: aimd.iniTemp represents the initial temperature during molecular dynamics simulation, in K;

Example: aimd.iniTemp = 1000

Parameter Name: aimd.finTemp

Default value: aimd.iniTemp

Allowed value: real

Description: aimd.finTemp represents the final temperature in the molecular dynamics simulation, this param-
eter is only effective when aimd.ensemble = SA; unit K;

Example: aimd.finTemp = 1000

Parameter Name: aimd.timeStep

Default value: 1

Allowed value: real

Description: aimd.timeStep represents the time step of the molecular dynamics simulation, in fs;

Example: aimd.timeStep = 1

Parameter Name: aimd.totalSteps

Default value: None

Allowed value: real

Description: aimd.totalSteps represents the total number of steps in the molecular dynamics simulation;

5.2. Detail parameter description 143

DS-PAW Manual

Example: aimd.totalSteps = 10000

Parameter Name: wannier.functions

Default value: None

Allowed value: int

Description: wannier.functions indicates the number of Wannier functions;

Example: wannier.functions = 8

Parameter Name: wannier.wannMaxIter

Default value: 200

Allowed value: int

Description: wannier.wannMaxIter represents the total number of iterations in the process of solving the max-
imally localized Wannier functions;

Example: wannier.wannMaxIter = 500

Parameter Name: wannier.disMaxIter

Default value: 100

Allowed value: int

Description: wannier.disMaxIter represents the maximum number of iterations for disentanglement;

Example: wannier.disMaxIter = 200

Parameter Name: wannier.disWin

Default value: [lowest eigenvalue of the Hamiltonian obtained from self-consistent calculation, highest
eigenvalue]

Allowed value: 2*1 array

Description: wannier.disWin represents the disentanglement energy window, which defaults to including all
bands;

Example: wannier.disWin = [-1000,1000]

Parameter Name: wannier.disFrozWin

Default value: None

Allowed value: 2*1 array

Description: wannier.disFrozWin represents the disentanglement window, where the states within this window
remain unchanged during disentanglement;

Example: wannier.disFrozWin = [-10,10]

Parameter Name: wannier.disEfShift

144 5. Parameters Explanation

DS-PAW Manual

Default value: false

Allowed value: true/false

Description: wannier.disEfShift indicates whether the energy input for wannier.disWin and wan-
nier.disFrozWin is Ef=0;

Example: wannier.disEfShift = true

Parameter Name: wannier.interpolatedBand

Default value: false

Allowed value: true/false

Description: wannier.interpolatedBand indicates the switch for interpolating bands in the Wannier calcula-
tion;

Example: wannier.interpolatedBand = true

Parameter Name: wannier.kpointsLabel

Default value: None

Allowed value: n*1 string array

Description: wannier.kpointsLabel indicates the labels of high-symmetry points for interpolated band struc-
tures;

Example: wannier.kpointsLabel = [G,M,K,G]

Parameter Name: wannier.kpointsCoord

Default value: None

Allowed value: 3n*1 real array

Description: wannier.kpointsCoord indicates the fractional coordinates of the high-symmetry points for in-
terpolated band structures;

Example: wannier.kpointsCoord = [0, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0.5, 0, 0, 0]

Parameter Name: wannier.kpointsNumber

Default value: None

Allowed value: (n-1)*1 int array/ 1*1 int array

Description: This parameter is only effective when performing interpolated band calculations; wan-
nier.kpointsNumber is the number of K points between adjacent high-symmetry points in the band.

• – When the parameter length is (n-1)*1 int array, wannier.kpointsNumber is one less than the data size of
wannier.kpointsNumber

• – When the parameter length is a 1*1 int array, evenly distribute points around all high-symmetry points
based on the given parameter; the final number of evenly distributed points can be read from wan-
nier.kpointsNumber in DS-PAW.log;

5.2. Detail parameter description 145

DS-PAW Manual

Example: wannier.kpointsNumber = [100]

Parameter Name: wannier.kmeshTolerance

Default value: 1e-06

Allowed value: real

Description: wannier.kmeshTolerance determines whether two k-points are in the same shell;

Example: wannier.kmeshTolerance = 1e-06

Parameter Name: wannier.outStep

Default value: 20

Allowed value: int

Description: wannier.outStep specifies the interval at which wannier information is output when the task is
set to wannier;

Example: wannier.outStep = 50

Paramater Name: WannProj

Default value: None

Allowed value: n*1 string array

Description: WannProj is the label defining the initial projection orbit in wannier calculations, used in
structure.as;

Example:

1 Total number of atoms
2 2
3 Lattice
4 0.00 2.75 2.75
5 2.75 0.00 2.75
6 2.75 2.75 0.00
7 Direct WannProj
8 Si -0.125000000 -0.125000000 -0.125000000 [s,p]
9 Si 0.125000000 0.125000000 0.125000000 [s,p]

Note

1. The WannProj tag is set on line 7 of the structure.as file

2. The total number of projection orbits in this example is 2*(1+3) = 8

Allowed value range: DS-PAW supports 44 types of projection orbit names, divided into two categories, shown
as follows:

- First category: Abbreviated names of orbits, corresponding to the total number of orbits for this type, with the
two relationships shown in the table below:

146 5. Parameters Explanation

DS-PAW Manual

name number of projections
[s]

1

[p]
3

[d]
5

[f]
7

[sp]
2

[sp2]
3

[sp3]
4

[sp3d]
5

[sp3d2]
6

- Second category: The name of a specific orbit, with each array ([]) corresponding to 1 projection orbit:

[px] [py] [pz]
[dxy] [dyz] [dxz] [dz2] [dx2-y2]
[fz3] [fxz2] [fyz2] [fxyz] [fz(x2-y2)] [fx(x2-3y2)] [fy(3x2-y2)]
[sp-1] [sp-2]
[sp2-1] [sp2-2] [sp2-3]
[sp3-1] [sp3-2] [sp3-3] [sp3-4]
[sp3d-1] [sp3d-2] [sp3d-3] [sp3d-4] [sp3d-5]
[sp3d2-1] [sp3d2-2] [sp3d2-3] [sp3d2-4] [sp3d2-5] [sp3d2-6]

Note

1. When the initial orbit is not defined (see Quickstart section 2.30), the program executes a randomly selected
initial projection.

5.2. Detail parameter description 147

DS-PAW Manual

148 5. Parameters Explanation

6

Output File Format Specification

The DS-PAW 2023A versions default output files in JSON format can be directly analyzed and processed using
Device Studio. Additionally, the output files now support the hdf5 format. You can download vitables (run pip install
vitables in a Python environment) or HDFView to view the hdf5 format files, and utilize the python scripts provided
in Auxiliary Tool User Guide for result analysis.

Except for the charge density file rho.h5 and the solvent-bound charge density output file rhoBound.h5, the file-
names of other output files depend on the task type. Currently, DS-PAW supports 14 task types, and the corresponding
h5 filenames are: relax.h5, scf.h5, band.h5, dos.h5, potential.h5, elf.h5, pcharge.h5, frequency.h5, elastic.h5, neb.h5,
phonon.h5, aimd.h5, epsilon.h5, and wannier.h5.

DS-PAW 2023A currently supports output files in .json format, but users are not advised to continue using this
format for analysis. DS-PAW will completely remove the json format output during iterative versions, ceasing mainte-
nance and updates for this format. Users can control whether to output json files via the io.outJsonFile parameter.

6.1 relax.h5
relax.h5 is the output file when task = relax; this file is not output when the task type is something else.

The relax.h5 file contains at least 9 basic structures:

149

https://vitables.org/Download/
https://portal.hdfgroup.org/display/support/Download+HDFView

DS-PAW Manual

(1) AtomInfo saves the basic structural information of the system, such as cell size, atomic positions, etc.;

(2) Eigenvalue stores the number of bands calculated, spin information, the number of k-points and their coordinates,
the orbital occupation numbers and energy eigenvalues of each band at each k-point;

(3) Electron saves the total number of valence electrons in the system;

(4) Energy stores the total energy and Fermi energy;

(5) The force on each atom during the relaxation process is saved in Force;

(6) MagInfo stores the total magnetic moment information of atoms; if projections are enabled, it stores the projected
magnetic moment information.

(7) The RelaxInfo saves the stress and pressure data of the system at each step during structural relaxation;

150 6. Output File Format Specification

DS-PAW Manual

(8) Stress stores the stress magnitude in each direction of the unit cell, and the system pressure.

(9) Structures stores structure and magnetic moment data during relaxation;

6.2 scf.h5
scf.h5 is the output file when task = scf; this file is not output for other task types.

The scf.h5 file contains at least 8 fundamental structures, with basic information consistent with relax.h5:

Under *task = scf, calculations for various functionalities can be controlled through parameters such as sys and
io. The generated scf.h5 file will store data corresponding to these functionalities. Specifically, the calculations can
be categorized as follows:

6.2. scf.h5 151

DS-PAW Manual

(1) By setting io.optical = true, linear optical properties are calculated based on the self-consistent field (SCF)
calculation:

(2) Calculate Bader charge based on the self-consistent calculation by setting io.bader = true:

152 6. Output File Format Specification

DS-PAW Manual

(3) Perform ferroelectric calculations based on the self-consistent calculation by setting io.polarization =
true:

(4) Perform fixed potential calculations in the self-consistent calculation by setting sys.fixedP = true:

where ChemicalPotential_e is the electronic chemical potential of the system; EBulk is the negative value of

6.2. scf.h5 153

DS-PAW Manual

the Fermi level shift under the implicit solvent model; ElectrodePotential gives the potential value under different
calibration standards; and GrandTotalEnergy0 gives the total energy of the system under the grand canonical ensemble
of electrons.

Expand under the fixedPPotential tag to summarize information on key parameters during the electronic iteration.

(5) By setting io.band = true, io.dos = true, io.potential = true, and io.elf = true,
Perform band structure calculation, density of states calculation, potential function calculation, and electron
localization density calculation based on the self-consistent calculation:

154 6. Output File Format Specification

DS-PAW Manual

6.3 rho.h5
rho.h5 is the charge density output file for each task.

rho.h5 contains two structures:

Where AtomInfo is consistent with the AtomInfo structure in the relax.h5 file, and Rho stores the charge density

6.3. rho.h5 155

DS-PAW Manual

data:

6.4 rhoBound.h5
rhoBound.h5 is the output file for the solvent-bound charge density in the solvation model.

rhoBound.h5 contains two structures:

Where AtomInfo is largely consistent with the AtomInfo structure in the relax.h5 file, and Rho stores the solvent-
bound charge density data:

6.5 band.h5
band.h5 is the output file for each task = band. This file is not output when the task type is different.

band.h5 contains at least 3 structures:

The structures of AtomInfo, Structures, and the relax.h5 file are consistent. BandInfo stores the band structure
data:

156 6. Output File Format Specification

DS-PAW Manual

The band folding calculation corresponding to band.h5 should contain at least 4 structures:

The structure of the structs corresponding to AtomInfo, Structures, and the relax.h5 file are consistent. BandInfo
stores band data, and UnfoldingBandInfo stores band unfolding data.

6.5. band.h5 157

DS-PAW Manual

6.6 dos.h5
dos.h5 is the output file for task = dos; this file is not output when the task type is different.

dos.h5 contains at least 3 structures:

Among them, the structure of the structures corresponding to AtomInfo, Structures, and the file relax.h5 are con-
sistent, and DosInfo stores the density of states data:

6.7 potential.h5
potential.h5 is an output file under task = potential. This file is not generated for other task types.

The potential.h5 file contains at least 3 structures:

Where Potential stores the potential function data:

158 6. Output File Format Specification

DS-PAW Manual

6.8 elf.h5
elf.h5 is the output file for task = elf. When the task type is different, this file is not output.

elf.h5 contains at least 3 structures:

Where elf stores the local density data:

6.9 pcharge.h5
pcharge.h5 is the output file under task = pcharge; this file is not output when the task type is different.

The pcharge.h5 file contains two structures:

Here, Pcharge stores partial charge density data:

6.10 optical.h5
optical.h5 is the output file for task = optical; this file is not generated for other task types.

optical.h5 contains four structures:

6.8. elf.h5 159

DS-PAW Manual

(1) Basic structural information of the system, such as unit cell size and atomic positions, is stored in AtomInfo:

(2) The opticalInfo variable stores data on various properties from optical calculations:

(3) The optical calculation structure information is saved in Structures:

(4) WaveDerivate stores the derivative array of wave functions with respect to k-points, with a size of: (real part,
imaginary part) * NumberOfBands (after selection) * NumberOfKPoints * NumberOfSpin * (x, y, z); Deriva-
tiveIndex gives the dimension of the derivative array; DerivativeValue gives the value of the derivative array.

160 6. Output File Format Specification

DS-PAW Manual

6.11 frequency.h5
frequency.h5 is the output file for task = frequency; this file is not generated for other task types.

With spin considered, frequency.h5 contains four structures:

Where frequency data is stored in FrequencyInfo:

6.12 elastic.h5
elastic.h5 is the output file for task = elastic. This file is not output when the task type is other than elastic.

With spin considered, elastic.h5 contains four structures:

Elastic data is stored in ElasticInfo:

6.13 neb.h5
neb.h5 is the output file in the top-level directory when task = neb.

6.11. frequency.h5 161

DS-PAW Manual

neb.h5 contains five structures:

The BarrierInfo stores the maximum force, reaction coordinate (reaction distance between each image and the
initial 00 structure), maximum shear force, and total energy data:

Where the switch for saving the initial and final states of the calculation is stored in IniFin:

The LoopInfo object stores the energy and force changes for each image during the neb optimization process:

In which RelaxedStructure stores the structure data after optimization of each image:

162 6. Output File Format Specification

DS-PAW Manual

Where UnrelaxStructure stores the structural data before optimization of each image:

6.14 neb01.h5
neb01.h5 is the output file in the 01 subdirectory when task = neb. Similarly, the neb02.h5 file will be generated

in the 02 subdirectory.

In the spin-unpolarized case, neb01.h5 contains 12 structures:

6.14. neb01.h5 163

DS-PAW Manual

Among them, the structures of AtomInfo, Eigenvalue, Electron, Energy, Force, Stress, and Structures are consistent
with the corresponding structure in the relax.h5 file;

In the Distance data, the distance change of the reaction atom between the initial and final images during the
optimization process is stored.

where MaxForce stores the maximum force data for image 1 during optimization;

Where NebSize stores the maximum number of steps in the transition state calculation.

where Tangent stores the data of the change in the tangent force of image 1 during the optimization process;

where TotalEnergy stores the total energy change data of image 1 during the optimization process;

6.15 phonon.h5
phonon.h5 is the output file under task = phonon. This file is not output when the task type is different.

(1) When phonon.method = dfpt, the phonon.f5 file is as follows:

When the dfpt method is used to calculate phonon band structure and density of states, it enables the calculation
of dielectric constants and phonon thermodynamics. The phonon.h5 file contains 9 structures:

164 6. Output File Format Specification

DS-PAW Manual

Where BandInfo and DosInfo respectively store the band structure and density of states data, their structures are
consistent with the corresponding structures in band.h5 and dos.h5 files;

Where EpsilonInfo stores the dielectric function data:

where the mechanical constant data is stored in ForceConstant:

Where PrimitiveAtomInfo, SupercellAtomInfo, and unitAtomInfo store the structural information for the primitive
cell, supercell, and unit cell, respectively. Taking the unit cell as an example, the structure is as follows:

In which ThermalInfo stores phonon thermodynamic data:

6.15. phonon.h5 165

DS-PAW Manual

Here, Phonon stores the input parameters data for phonon calculations:

(2) When phonon.method = fd, the phonon.f5 file is shown as follows:

For phonon band structure and density of states calculations using the finite displacement method, phonon.h5
contains 9 structures:

Where BandInfo and DosInfo store band structure and density of states data, respectively, whose structures corre-

166 6. Output File Format Specification

DS-PAW Manual

spond to the structures in the files band.h5 and dos.h5, respectively.

where ForceConstant stores the force constant data, and PrimitiveAtomInfo, SupercellAtomInfo, and unitAtom-
Info respectively saving the structural information of the primitive cell, supercell, and unit cell, whose structures are
consistent with the structures in the phonon.f5 file generated when phonon.method = dfpt;

Where ForceSet stores the mechanical matrix data calculated for each structure:

Here, the phonon calculation input parameter data is stored in Phonon:

6.16 phonon001.h5
task = phonon, when phonon.method = fd, the file phonon.h5 will be output under the 001 subfolder. This type of

h5 file can be renamed to phonon001.h5. Similarly, the phonon.h5 file will also be generated under the 002 folder.

In the case of spin consideration, phonon001.h5 contains 7 structures, as follows:

6.16. phonon001.h5 167

DS-PAW Manual

6.17 aimd.h5
aimd.h5 is the output file for task = aimd; it is not output when the task type is different.

When considering spin, aimd.h5 contains 9 structures:

The underlying structure information is consistent with relax.h5;

The new structure AimdInfo contains n structures, each storing the state information of the system under a certain
ion step, such as temperature, pressure, energy, and kinetic energy:

168 6. Output File Format Specification

DS-PAW Manual

6.18 epsilon.h5
epsilon.h5 is the output file for task = epsilon. This file is not produced for other task types

Considering spin, epsilon.h5 contains four structures:

In which the dielectric constant data is stored in EpsilonInfo:

6.19 wannier.h5
wannier.h5 is the output file under task = wannier; this file is not output when the task type is other than wannier.

Without considering spin, the interpolated bands calculated by wannier.h5 contain 9 structures:

In this, WannBandInfo stores the interpolated band data, which can be used to plot band diagrams:

6.18. epsilon.h5 169

DS-PAW Manual

Within this, WannInfo stores the Wannier function fitting data, including k-grid points and initial projection infor-
mation, etc.:

In which, the spin1 under WannInfo stores the fitting data of Wannier functions, including the calculated Hamil-
tonian and other data:

170 6. Output File Format Specification

7

Restart calculation

DS-PAW currently supports resuming calculations for structure relaxation, transition state calculations,
molecular dynamics simulations, constant-potential calculations, and reading rho and wave functions. Users
can specify file paths to read the final structure, magnetic moments, potential, and other relevant information from the
previous calculation.

7.1 Continuation of Relax Calculation Instructions
In the event that the relaxation calculation is unexpectedly terminated, fails to converge within the maximum

number of steps, or if a higher-precision relaxation calculation is desired, it is necessary to obtain the final structure from
the previous calculation (including the magnetic moment information of the final configuration if spin is considered
in the system) to perform the next relaxation calculation. In this case, the program will output latestStructure.as and
relax.h5 files, both latestStructure.as and relax.h5 can be used as input files for a subsequent calculation. If you need
to continue the calculation based on this structure, it is recommended to follow these steps:

1. Create a clean directory and prepare two input files: relax.in and latestStructure.as (or relax.h5);

2. Set the parameter sys.structure = latestStructure.as (or sys.structure = relax.h5) in the relax.in file. The name
of the structure file can be modified, and it is recommended to provide a clear indication for the continuation
calculation.

3. Submit the job for calculation.

latestStructure.as is one of the readable files for structure relaxation continuation calculations. In addition to this,
the relax.h5 file can also be read as the final state structure.

7.2 NEB Transition State Calculation Continuation Instructions
If the transition state calculation is unexpectedly terminated, fails to converge within the maximum number of

steps, or requires a higher accuracy calculation, you need to obtain the final structure from the previous calculation (in-
cluding the magnetic moment information if the system considers spin) to perform the next transition state calculation.
The transition state calculation involves multiple subfolders; in this case, In each subfolder No, the files latestStruc-
tureNo.as and nebNo.h5 are output by default. The .as file can be used as the input file for a subsequent calculation.

171

DS-PAW Manual

Taking an insertion point number of 3 as an example, if you need to continue the calculation based on this structure,
you can directly call the NEB continuation script described in Auxiliary Tool User Guide:

Demonstration of the data processing procedure using a Python script:

1. Enter the directory of the initial NEB calculation and view the files in that directory:

2. Call the :guilabel:`neb_restart.py script in this directory and execute the following command:

1 python neb_restart.py

Following the prompts in the interactive interface, specify the path to the original NEB file, the parameter file
name, and the backup folder name. In this example, the backup folder is specified as bakfile.

3. Check the neb directory again:

Where bakfile is the backup file, and the 00-04 folders store the structure files required for resuming the calculation.
You can submit directly within this directory to resume the calculation.

4. Backup folder bakfile structure analysis.

172 7. Restart calculation

DS-PAW Manual

The outermost compressed archive, neb.tar.xz, in the backup folder contains the initial NEB calculation h5 files.
The compressed archives in each subfolder contain backups of all files from the corresponding subfolder of the initial
NEB calculation. The outermost layer outside the subfolders contains the initial and final state structure files from the
initial calculation.

If users prepare input files themselves, it is recommended to follow the steps below:

1. Create a clean directory and place the neb.in file, initial and final structure files structure00.as and structure04.as,
and the final structure files for intermediate configurations latestStructure01.as, latestStructure02.as, and latest-
Structure03.as into it;

2. Rename the intermediate structure files, :guilabel:`latestStructureNo.as, to :guilabel:`structureNo.as;

3. Create folders 00, 01, 02, 03, and 04, and place the corresponding structure files in each folder;

4. Submit the job for calculation.

The .as file is a readable file for continuing transition state calculations; it is not recommended to use the nebNo.h5
file as input for continuing calculations.

7.2. NEB Transition State Calculation Continuation Instructions 173

DS-PAW Manual

7.3 Instructions for Continuing AIMD Molecular Dynamics Simula-
tions

If the molecular dynamics simulation was unexpectedly terminated, or if you wish to extend the simulation time,
you need to obtain the final structure and velocities (and magnetization information for spin-polarized systems) from
the previous calculation to perform a longer simulation. The molecular dynamics simulation by default outputs latest-
Structure.as and aimd.h5 file. Both latestStructure.as and aimd.h5 can be used as input files for continuation. If you
need to continue the calculation from this structure, it is recommended to follow the steps below:

1. Create a clean directory and prepare two input files: aimd.in and latestStructure.as (or aimd.h5);

2. In the aimd.in file, set the parameter sys.structure = latestStructure.as (or sys.structure = aimd.h5). The
name of the structure file can be modified; it is recommended to include a clear continuation run indication in
the filename.

3. Submit the job for calculation.

latestStructure.as is one of the readable files for continuing molecular dynamics calculations, and besides that, the
aimd.h5 file can also be read as the final structure.

Note

1. To modify the ensemble for a continuation run, delete the information in the Next positions section of the
latestStructure.as file; otherwise, the continuation run may result in errors.

7.4 Continuation Instructions for fixedPotential Calculations
The fixedPotential calculation uses the steepest descent method, which solves the target charge and potential values

through multiple self-consistent iterations. This process can be viewed as n self-consistent calculations that depend on
each other. If the calculation is unexpectedly interrupted before the charge converges, the continuation function can
be used. This function uses the charge and potential values obtained before the interruption as the starting point to
approach the target potential. The following steps are recommended to resume a constant potential calculation:

1. In the original calculation directory, modify the fixedPotential.in file to specify the directory containing the h5 file
obtained from the initial calculation to resume the calculation. The corresponding parameter is cal.iniFixedP
= ./scf.h5.

Note

1. If you want to keep the scf.h5 file from the initial calculation, you can rename the original file, such as
renaming it to readscf.h5, and set cal.iniFixedP = ./readscf.h5.

2. When continuing a calculation, the number of electrons and the target electrode potential are obtained from
the specified file; modifying these parameters in the in file will have no effect.

7.5 Read rho and wave restart instructions
Due to the computational expense of hybrid functional calculations, when a calculation fails to converge in one

step or when higher convergence accuracy is desired, the already obtained charge density and wave function files can
be read. This is achieved by specifying the file paths using the cal.iniCharge and cal.iniWave parameters. The
following Resatrt-HSE.in file lists the key parameters for restarting a hybrid functional calculation:

174 7. Restart calculation

DS-PAW Manual

task type
task = scf

#hybrid related
sys.hybrid=true
sys.hybridType=HSE06

#read related
cal.iniCharge = ../01/rho.bin
cal.iniWave = ../01/wave.bin

#outputs related
io.charge = true
io.wave = true

Note

1. For hybrid functional calculations, both the charge density and wave function files are required for continu-
ation, and neither can be omitted.

2. For hybrid functional calculations, it is recommended to output the rho.bin and wave.bin files, which can be
used as input for continuation calculations.

7.5. Read rho and wave restart instructions 175

DS-PAW Manual

176 7. Restart calculation

8

Auxiliary Tool User Guide

Note

Want to quickly analyze results, plot data, or perform common data processing tasks after completing a DFT
calculation with DSPAW?

dspawpy (Python >= 3.9) is such a tool. It can be called programmatically (see example scripts below) and
also provides a command-line interactive program.

After following the tutorial installation instructions, you can use the interactive program by typing dspawpy
and pressing Enter in the command line:
... loading dspawpy cli ...

This is the dspawpy command-line interactive tool. Enjoy!
()
_| | ___ _ _ _ _ _ _ _ _ _ _ _

/'_` |/',__)('_`\ /'_`)() () ()('_`\ () ()
((_| |__, \| (_))((_| || _/ _/ || (_))| (_) |
__,_)(____/| ,__/'`__,_) ___x___/ | ,__/ __, |

| | | | ()_| |
(_) (_) ___/

Version: Installation Path

======================================
| 1: Update
| 2: structure conversion
| 3: Volumetric data processing
| 4: Band structure calculation
| 5: Density of States (DOS) data processing
| 6: Joint display of band structure and density of states (DOS)
| 7: Optical properties data processing
| 8: NEB (Nudged Elastic Band) transition state calculation data processing

177

DS-PAW Manual

| 9: phonon calculation data processing
| 10: aimd ab initio molecular dynamics data processing
| 11: Polarization data processing
| 12: ZPE zero-point energy data processing
| 13: Thermal correction energy of TS
|
| q: Quit
======================================
--> Enter a number and press Enter to select a function:

Highlights:

• Autocompletion: Works by pressing the Tab key, helping to quickly and correctly enter the required program
arguments.

• Multithreaded lazy loading: Loads modules in the background while waiting for user input, significantly
reducing waiting time; loads only necessary modules, minimizing memory usage.

Note:

• When using on a remote server, the startup time may be longer due to poor disk I/O performance, potentially
taking up to half a minute in extreme cases (directly related to the servers current disk I/O performance). If
this is unacceptable, please install and use dspawpy on your own computer.

• After typing dspawpy and pressing Enter, Python will first load built-in modules. Once this is complete, the
prompt loading dspawpy cli will appear, indicating the second stage (loading third-party dependencies) has
begun.

• After the second stage is completed, a welcome screen will be displayed, indicating that dspwapy has finished
the initial loading and has entered the third stage. Subsequently, it will dynamically load the corresponding
dependency libraries based on the selected functional modules, thereby minimizing waiting time.

8.1 Installation and Updates
1. On the HZW machine, dspawpy has been pre-installed. Activate the virtual environment using the following

command to start using it:

source /data/hzwtech/profile/dspawpy.env

2. On other machines, please install dspawpy yourself (choose one of the following two methods):

• Using mamba or conda, you can install the package from https://conda-forge.org/download/.

mamba install dspawpy -c conda-forge
#conda install dspawpy -c conda-forge

• Or, use pip3 (some operating systems may not have the executable pip3, in which case try pip)

pip

• pip3 is the package manager that comes with python3.

• Linux and Mac usually come with Python 3 and pip3.

• On Windows, open the Microsoft Store, search for Python, and install it.

178 8. Auxiliary Tool User Guide

https://conda-forge.org/download/

DS-PAW Manual

Then open cmd or powershell to use pip.

pip3 install dspawpy

For information on how to configure pip and conda mirror addresses to speed up the installation process, please
refer to https://mirrors.tuna.tsinghua.edu.cn/help/pypi/ and https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/.

If the installation still fails, try the mamba/conda installation method above.

Warning

On clusters, due to permission issues, the pip in the public path may not support global installation of
Python libraries. You must add the –user option after pip install to install them in your home directory under
~/.local/lib/python3.x/site-packages/, where 3.x represents the Python interpreter version, and x can be any integer
between 9 and 13.

Python will prioritize loading dspawpy from the home directory, even if the version in the public environment
is newer! Therefore, if you have previously installed dspawpy with --user and have forgotten to manually update
the old version in your home directory, even after sourcing the public environment, you will not be able to call the
dspawpy in the public environment. Instead, the old version will still be used, leading to some bugs.

Therefore, considering that the HZW cluster automatically updates dspawpy weekly, it is recommended
not to install it redundantly in your home directory; delete any existing installations. On other clusters, ensure
that you manually update dspawpy in your home directory in a timely manner.

If you prefer not to delete and update the dspawpy in your home directory, you can use the -s option when
running your Python scripts to prevent importing dspawpy from your home directory: python -s your-script.
py.

8.1.1 Update dspawpy
To update dspawpy if it was installed with mamba/conda, use the following command:

mamba update dspawpy
#conda update dspawpy

8.1. Installation and Updates 179

https://mirrors.tuna.tsinghua.edu.cn/help/pypi/
https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

DS-PAW Manual

If dspawpy was installed via pip:

pip install dspawpy -U # -U for upgrading to the latest version

Note

If pip uses a domestic mirror site, it may fail to upgrade smoothly because the mirror site has not yet synchro-
nized the latest version of dspawpy dspawpy. Please use the following command to tell pip to download and install
from the official PyPI site:

pip install dspawpy -i https://pypi.org/simple --user -U # -i specifies the download␣
↪→address, --user installs for the current user only, and -U installs the latest␣
↪→version

If you encounter errors related to dspawpy during runtime, first verify that you have correctly imported the
latest version of dspawpy and check the installation path:

$ python3 # or python

>>> import dspawpy
>>> dspawpy.__version__ # will output the version number
>>> dspawpy.__file__ # will output the installation path

8.2 structure structure conversion
To read structure information, use the read function; to write structure information to a file, use the write

function; for quick structure conversion, use the convert function:

API: read(), write(), convert()

dspawpy.io.structure.convert(infile, si=None, ele=None, ai=None, infmt: str | None = None, task: str = 'scf',
outfile: str = 'temp.xyz', outfmt: str | None = None, coords_are_cartesian: bool
= True)

convert from infile to outfile.

• multi -> single, only keep last step

• crystal -> molecule, will lose lattice info

• molecule -> crystal, will add a box of twice the maximum xyz

• pdb, dump may suffer decimal precision loss

Parameters

• infile –

– h5/json/as/hzw/cif/poscar/cssr/xsf/mcsqs/prismatic/yaml/fleur-inpgen file path

– If a folder is given, will read {task}.h5/json files

– If structures are given, will read multiple structures.

• si (int, list, or str) –

– Structure index, starting from 1

∗ si=1, read the 1st

180 8. Auxiliary Tool User Guide

https://pypi.org/project/dspawpy/

DS-PAW Manual

∗ si=[1,2], read the 1st and 2nd

∗ si=:, read all

∗ si=-3:, read the last 3

– If empty, for multi-configuration files, all configurations will be read; for single-
configuration files, the latest configuration will be read.

– This parameter is only valid for h5/json files.

• ele –

– Element symbol, written as H or [H,O]

– If empty, atomic information for all elements will be read.

– This parameter is only valid for h5/json files.

• ai –

– Atom index, starting from 1

– Usage is the same as si

– If empty, atomic information for all atoms will be read.

– This parameter is only valid for h5/json files.

• infmt –

– Input structure file type, e.g., h5. If None, the file extension will determine the format.

• task –

– Used when datafile is a folder path to locate the internal {task}.h5/json file.

– Calculation task type, including scf, relax, neb, aimd. Other values will be ignored.

• outfile –

– Output filename

• outfmt –

– Output structure file type, e.g., xyz. If None, the file extension will determine the format.

• coords_are_cartesian –

– Whether to write coordinates in Cartesian form (default: True); otherwise, fractional co-
ordinates will be used.

– This option is currently only valid for as and json formats.

Examples

>>> from dspawpy.io.structure import convert
>>> convert('dspawpy_proj/dspawpy_tests/inputs/supplement/PtH.as', outfile='dspawpy_
↪→proj/dspawpy_tests/outputs/doctest/PtH.hzw')
==> ...PtH.hzw...

batch test

8.2. structure structure conversion 181

DS-PAW Manual

>>> for readable in ['relax.h5', 'system.json', 'aimd.pdb', 'latestStructure.as',
↪→'CuO.hzw', 'POSCAR']:
... for writable in ['pdb', 'xyz', 'dump', 'as', 'hzw', 'POSCAR']:
... convert('dspawpy_proj/dspawpy_tests/inputs/supplement/stru/'+readable,␣
↪→outfile=f"dspawpy_proj/dspawpy_tests/outputs/doctest/{readable.split('.')[0]}.
↪→{writable}")
==> ...relax.pdb...
==> ...relax.xyz...
==> ...relax.dump...
==> ...relax.as...
==> ...relax.hzw...
==> ...system.pdb...
==> ...system.xyz...
==> ...system.dump...
==> ...system.as...
==> ...system.hzw...
==> ...aimd.pdb...
==> ...aimd.xyz...
==> ...aimd.dump...
==> ...aimd.as...
==> ...aimd.hzw...
==> ...latestStructure.pdb...
==> ...latestStructure.xyz...
==> ...latestStructure.dump...
==> ...latestStructure.as...
==> ...latestStructure.hzw...
==> ...CuO.pdb...
==> ...CuO.xyz...
==> ...CuO.dump...
==> ...CuO.as...
==> ...CuO.hzw...
==> ...POSCAR.pdb...
==> ...POSCAR.xyz...
==> ...POSCAR.dump...
==> ...POSCAR.as...
==> ...POSCAR.hzw...

dspawpy.io.structure.read(datafile: str | list, si=None, ele=None, ai=None, fmt: str | None = None, task: str |
None = 'scf')

Read one or more h5/json files and return a list of pymatgen Structures.

Parameters

• datafile –

– file paths for h5/json/as/hzw/cif/poscar/cssr/xsf/mcsqs/prismatic/yaml/fleur-inpgen files;

– If a directory path is given, it can be combined with the task parameter to read the
{task}.h5/json files inside

– If a list of strings is given, it will sequentially read the data and merge them into a list of
Structures

• si (int, list or str) –

– Configuration number, starting from 1

182 8. Auxiliary Tool User Guide

DS-PAW Manual

∗ si=1, reads the first configuration

∗ si=[1,2], reads the first and second configurations

∗ si=:, reads all configurations

∗ si=-3:, reads the last three configurations

– If empty, it reads all configurations for multi-configuration files and the latest configuration
for single-configuration files

– This parameter is only valid for h5/json files

• ele –

– Element symbol, format reference: H or [H,O]

– If empty, it will read atomic information for all elements

– This parameter is only valid for h5/json files

• ai –

– Atom index, starting from 1

– Same as si

– If empty, it will read all atom information

– This parameter is only valid for h5/json files

• fmt –

– File format, including as, hzw, xyz, pdb, h5, json 6 types, other values will be ignored.

– If empty, the file type will be determined based on file name conventions.

• task –

– Used when datafile is a directory path to find the internal {task}.h5/json file.

– Determine the task type, including scf, relax, neb, aimd four types, other values will be
ignored.

Returns
Structure list

Return type
pymatgen_Structures

Examples

>>> from dspawpy.io.structure import read

Reads a single file to generate a list of Structures

>>> pymatgen_Structures = read(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→supplement/PtH.as')
>>> len(pymatgen_Structures)
1
>>> pymatgen_Structures = read(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→supplement/PtH.hzw')
>>> len(pymatgen_Structures)
1

(continues on next page)

8.2. structure structure conversion 183

DS-PAW Manual

(continued from previous page)

>>> pymatgen_Structures = read(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→supplement/Si2.xyz')
>>> len(pymatgen_Structures)
1
>>> pymatgen_Structures = read(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→supplement/aimd.pdb')
>>> len(pymatgen_Structures)
1000
>>> pymatgen_Structures = read(datafile='dspawpy_proj/dspawpy_tests/inputs/2.1/
↪→relax.h5')
>>> len(pymatgen_Structures)
3
>>> pymatgen_Structures = read(datafile='dspawpy_proj/dspawpy_tests/inputs/2.1/
↪→relax.json')
>>> len(pymatgen_Structures)
3

Note that pymatgen_Structures is a list composed of multiple Structure objects, each corresponding to a structure.
If there is only one structure, it will also return a list. Please use pymatgen_Structures[0] to obtain the Structure
object.

When datafile is a list, it reads multiple files sequentially and merges them into a Structures list

>>> pymatgen_Structures = read(datafile=['dspawpy_proj/dspawpy_tests/inputs/
↪→supplement/aimd1.h5','dspawpy_proj/dspawpy_tests/inputs/supplement/aimd2.h5'])

dspawpy.io.structure.write(structure, filename: str, fmt: str | None = None, coords_are_cartesian: bool =
True)

Write information to the structure file

Parameters

• structure – A pymatgen Structure object

• filename – Structure filename

• fmt –

– Structure file type, natively supports json, as, hzw, pdb, xyz, dump six types

• coords_are_cartesian –

– Whether to write in Cartesian coordinates, default is True; otherwise write in fractional
coordinate format

– This option is currently only effective for as and json formats

Examples

First, read the structure information:

>>> from dspawpy.io.structure import read
>>> s = read('dspawpy_proj/dspawpy_tests/inputs/2.15/01/neb01.h5')
>>> len(s)
17

Writing structure information to a file:

184 8. Auxiliary Tool User Guide

DS-PAW Manual

>>> from dspawpy.io.structure import write
>>> write(s, filename='dspawpy_proj/dspawpy_tests/outputs/doctest/PtH.json', coords_
↪→are_cartesian=True)
==> ...PtH.json...
>>> write(s, filename='dspawpy_proj/dspawpy_tests/outputs/doctest/PtH.as', coords_
↪→are_cartesian=True)
==> ...PtH.as...
>>> write(s, filename='dspawpy_proj/dspawpy_tests/outputs/doctest/PtH.hzw', coords_
↪→are_cartesian=True)
==> ...PtH.hzw...

PDB, XYZ, and DUMP file types can write multiple conformations to form a trajectory. The generated XYZ
trajectory files can be opened and visualized using visualization software like OVITO.

>>> write(s, filename='dspawpy_proj/dspawpy_tests/outputs/doctest/PtH.pdb', coords_
↪→are_cartesian=True)
==> ...PtH.pdb...
>>> write(s, filename='dspawpy_proj/dspawpy_tests/outputs/doctest/PtH.xyz', coords_
↪→are_cartesian=True)
==> ...PtH.xyz...
>>> write(s, filename='dspawpy_proj/dspawpy_tests/outputs/doctest/PtH.dump', coords_
↪→are_cartesian=True)
==> ...PtH.dump...

The recommended format for storing single structure information is as format. If the Structure contains magnetic
moment or degree of freedom information, it will be written in the most complete format, such as Fix_x, Fix_y,
Fix_z, Mag_x, Mag_y, Mag_z. The default value for degree of freedom information is F, and the default value for
magnetic moment is 0.0. You can manually delete this default information from the generated as file as needed.
Writing to other types of structure files will ignore magnetic moment and degree of freedom information.

See the 2conversion.py script for conversion:

1 # coding:utf-8
2 from dspawpy.io.structure import convert
3

4 convert(
5 infile="dspawpy_proj/dspawpy_tests/inputs/2.1/relax.h5", # Structure to be␣

↪→converted, if in the current path, you can just write the filename
6 si=None, # Select configuration number, if not specified, read all by default
7 ele=None, # Filter element symbol, default reads atomic information for all elements
8 ai=None, # Filter atomic indices, starting from 1, default to read all atomic␣

↪→information
9 infmt=None, # Input structure file type, e.g., 'h5'. If None, it will be matched␣

↪→ambiguously based on the filename rule.
10 task="relax", # Task type, this parameter is only valid when infile is a folder␣

↪→rather than a filename
11 outfile="dspawpy_proj/dspawpy_tests/outputs/us/relaxed.xyz", # Structure file name
12 outfmt=None, # Output structure file type, e.g., 'xyz'. If None, it will be fuzzy␣

↪→matched according to filename rules.
13 coords_are_cartesian=True, # Written in Cartesian coordinates by default
14)

The rules for setting several key parameters of the convert function are shown in the table below:

8.2. structure structure conversion 185

DS-PAW Manual

Table 1: dspawpy Supported IO format

infmt
(input
file
format)

infile (Input file name
fuzzy match)

outfmt
(output
file for-
mat)

outfile
(output file-
name fuzzy
match)

Description

h5 *.h5 X X HDF5 files saved after DS-PAW calculations are
completed

json *.json json *.json json files saved after DS-PAW calculations are
completed

pdb *.pdb pdb *.pdb Protein Data Bank
as *.as as *.as DS-PAW structure file containing atomic coor-

dinates and other information
hzw *.hzw hzw *.hzw DeviceStudios default structure file
xyz *.xyz xyz *.xyz Supports only single conformation of molecular

structure when reading, and extended-xyz type
trajectory files including unit cell when writing

X X dump *.dump LAMMPS dump-type trajectory files
X *.cif*/*.mcif* cif/mcif *.cif*/*.mcif* Crystallographic Information File
X *POSCAR*/*CONTCAR*/*.vasp/CHGCAR*/LOCPOT*/vasprun*.xml*poscar *POSCAR* VASP files
X *.cssr* cssr *.cssr* Crystal Structure Standard Representation
X *.yaml/*.yml yaml/yml *.yaml/*.yml YAML Aint Markup Language
X *.xsf* xsf *.xsf* eXtended Structural Format
X *rnd-

str.in*/*lat.in*/*bestsqs*
mcsqs *rnd-

str.in*/*lat.in*/*bestsqs*
Monte Carlo Special Quasirandom Structure

X inp*.xml/*.in*/inp_* fleur-
inpgen

.in FLEUR structure file, requires the additional in-
stallation of the pymatgen-io-fleur library

X *.res res *.res ShelX res structure file
X *.config*/*.pwmat* pwmat *.con-

fig/*.pwmat
PWmat files

X X pris-
matic

prismatic A file format used for STEM simulations

X CTRL* X X Stuttgart LMTO-ASA files

Note

• In the table above, * represents any character, and X indicates unsupported formats.

• h5, json, pdb, xyz, dump, and CONTCAR formats support trajectory information consisting of multiple
structures (common in structure optimization, NEB, or AIMD tasks)

• The in(out)fmt parameter has higher priority than filename wildcard matching; for example, specifying
in(out)fmt=h5 allows any filename, even a.json.

• When writing structural information in json format, only visualization of NEB chain tasks is supported. See
Observing the NEB Chain for details.

• Structure information from DS-PAW output files such as neb.h5, phonon.h5, phonon.json, neb.json, and
wannier.json is currently not readable.

186 8. Auxiliary Tool User Guide

DS-PAW Manual

8.3 Volumetric Data Processing

8.3.1 volumetricData Visualization
• See also 3vis_vol.py:

1 # coding:utf-8
2 from dspawpy.io.write import write_VESTA
3

4 # Read data file (in h5 or json format), process it, and output to a cube file
5 write_VESTA(
6 in_filename="dspawpy_proj/dspawpy_tests/inputs/2.2/rho.h5", # Path to the json␣

↪→or h5 file containing electronic system information
7 data_type="rho", # Data type, supported values are "rho", "potential", "elf",

↪→"pcharge", "rhoBound"
8 out_filename="dspawpy_proj/dspawpy_tests/outputs/us/DS-PAW_rho.cube", # Output␣

↪→file path
9 gridsize=(10, 10, 10), # Specifies the interpolation grid size

10 format="cube", # Supported formats: cube, vesta, and txt (xyz grid coordinates␣
↪→+ values)

11)

Drag the converted file DS-PAW_rho.cube into the VESTA software to visualize it:

8.3.2 Differential volumetric data visualization
• See 3dvol.py:

1 # coding:utf-8
2 from dspawpy.io.write import write_delta_rho_vesta
3

4 # Read the data file (h5 or json format), process it, and output it to a cube file,␣
↪→which can be directly opened with Vesta and has a small volume

5 write_delta_rho_vesta(
(continues on next page)

8.3. Volumetric Data Processing 187

DS-PAW Manual

(continued from previous page)

6 total="dspawpy_proj/dspawpy_tests/inputs/supplement/AB.h5", # Data file for␣
↪→the system containing all components

7 individuals=[
8 "dspawpy_proj/dspawpy_tests/inputs/supplement/A.h5",
9 "dspawpy_proj/dspawpy_tests/inputs/supplement/B.h5",

10], # Data files for the system containing each component
11 output="dspawpy_proj/dspawpy_tests/outputs/us/3delta_rho.cube", # Output file␣

↪→path
12)

The above script supports the processing of charge density differences in multi-component systems. As an ex-
ample using a binary system, it generates the charge density difference file delta_rho.cube from AB.h5, A.h5,
and B.h5. This file can be directly opened using VESTA.

8.3.3 Volumetric data plane average
• See also 3planar_ave.py:

1 # coding:utf-8
2 from dspawpy.plot import average_along_axis
3

4 axes = [
5 "2"
6] # "0", "1", "2" correspond to the x, y, z axes respectively; select which axes to␣

↪→average along
7 axes_indices = [int(i) for i in axes]
8 for ai in axes_indices:
9 plt = average_along_axis(

10 datafile="dspawpy_proj/dspawpy_tests/inputs/3.3/scf.h5", # Data file path
11 task="potential", # Task name, can be 'rho', 'potential', 'elf', 'pcharge', 'rhoBound'
12 axis=ai, # Axis along which to plot the potential curve
13 smooth=False, # Whether to smooth
14 smooth_frac=0.8, # Smoothing coefficient
15 subtype=None, # Used to specify the subclass of task data, currently only used␣

↪→for Potential
16 label=f"axis{ai}", # Legend label
17)
18 if len(axes_indices) > 1:
19 plt.legend()
20

21 plt.xlabel("Grid Index")
22 plt.ylabel("TotalElectrostaticPotential (eV)")
23 plt.savefig("dspawpy_proj/dspawpy_tests/outputs/us/3pot_ave.png", dpi=300) # Image name

Processing the electrostatic potential file obtained from Section 3.3 of Application Cases yields the following
vacuum direction potential function curve:

188 8. Auxiliary Tool User Guide

DS-PAW Manual

API: write_VESTA(), write_delta_rho_vesta(), average_along_axis()

• The write_VESTA function handles the visualization of volumetric data:

dspawpy.io.write.write_VESTA(in_filename: str, data_type: str, out_filename: str = 'DS-PAW.cube',
subtype: str | None = None, format: str | None = 'cube', compact: bool =
False, inorm: bool = False, gridsize: Sequence[int] | None = None)

Read data from a json or h5 file containing electronic system information and write to a VESTA formatted
file.

Parameters

– in_filename – Path to a json or h5 file containing electronic system information

– data_type – Data type, supported values are rho, potential, elf, pcharge, rhoBound

– out_filename – Output file path, default DS-PAW.cube

– subtype – Used to specify the subtype of data_type, default is None, which will read the
TotalElectrostaticPotential data of potential

– format – Output data format, supports cube and vesta (vasp), default is cube, case-
insensitive

– compact – Each data point for each grid is placed on a new line, reducing the file size
by decreasing the number of spaces (this does not affect the parsing of VESTA software),
default is False

– inorm – Whether to normalize the volume data so that the sum is 1, default is False

8.3. Volumetric Data Processing 189

DS-PAW Manual

– gridsize – The redefined number of grid points, in the format (ngx, ngy, ngz), default is
None, which uses the original number of grid points

Returns
VESTA formatted file

Return type
out_filename

Examples

>>> from dspawpy.io.write import write_VESTA
>>> write_VESTA("dspawpy_proj/dspawpy_tests/inputs/2.2/rho.json", "rho", out_
↪→filename='dspawpy_proj/dspawpy_tests/outputs/doctest/rho.cube')
==> ...rho.cube...

>>> from dspawpy.io.write import write_VESTA
>>> write_VESTA(
... in_filename="dspawpy_proj/dspawpy_tests/inputs/2.7/potential.h5",
... data_type="potential",
... out_filename="dspawpy_proj/dspawpy_tests/outputs/doctest/my_potential.
↪→cube",
... subtype='TotalElectrostaticPotential', # or 'TotalLocalPotential'
... gridsize=(50,50,50), # all integer, can be larger or less than the␣
↪→original gridsize
...)
Interpolating volumetric data...
volumetric data interpolated
==> ...my_potential.cube...
>>> write_VESTA(
... in_filename="dspawpy_proj/dspawpy_tests/inputs/2.8/elf.h5",
... data_type="elf",
... out_filename="dspawpy_proj/dspawpy_tests/outputs/doctest/elf.cube",
...)
==> ...elf.cube...
>>> write_VESTA(
... in_filename="dspawpy_proj/dspawpy_tests/inputs/2.9/pcharge.h5",
... data_type="pcharge",
... out_filename="dspawpy_proj/dspawpy_tests/outputs/doctest/pcharge.cube",
...)
==> ...pcharge.cube...
>>> write_VESTA(
... in_filename="dspawpy_proj/dspawpy_tests/inputs/2.7/potential.h5",
... data_type="potential",
... out_filename="dspawpy_proj/dspawpy_tests/outputs/doctest/my_potential.
↪→vasp",
... subtype='TotalElectrostaticPotential', # or 'TotalLocalPotential'
... gridsize=(50,50,50), # all integer, can be larger or less than the␣
↪→original gridsize
...)
Interpolating volumetric data...
volumetric data interpolated
==> ...my_potential.vasp...
>>> write_VESTA(

(continues on next page)

190 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

... in_filename="dspawpy_proj/dspawpy_tests/inputs/2.8/elf.h5",

... data_type="elf",

... out_filename="dspawpy_proj/dspawpy_tests/outputs/doctest/elf.vasp",

...)
==> ...elf.vasp...
>>> write_VESTA(
... in_filename="dspawpy_proj/dspawpy_tests/inputs/2.9/pcharge.h5",
... data_type="pcharge",
... out_filename="dspawpy_proj/dspawpy_tests/outputs/doctest/pcharge.vasp",
...)
==> ...pcharge.vasp...

>>> write_VESTA(
... in_filename="dspawpy_proj/dspawpy_tests/inputs/2.7/potential.h5",
... data_type="potential",
... out_filename="dspawpy_proj/dspawpy_tests/outputs/doctest/my_potential.
↪→txt",
... subtype='TotalElectrostaticPotential', # or 'TotalLocalPotential'
... gridsize=(50,50,50), # all integer, can be larger or less than the␣
↪→original gridsize
...)
Interpolating volumetric data...
volumetric data interpolated
==> ...my_potential.txt...
>>> with open("dspawpy_proj/dspawpy_tests/outputs/doctest/my_potential.txt") as␣
↪→t:
... contents = t.readlines()
... for line in contents[:10]:
... print(line.strip())
2 atoms
50 50 50 grid size
x y z value
0.000 0.000 0.000 0.3279418
0.055 0.055 0.000 -0.0740864
0.110 0.110 0.000 -0.8811763
0.165 0.165 0.000 -2.1283865
0.220 0.220 0.000 -4.0559145
0.275 0.275 0.000 -6.8291030
0.330 0.330 0.000 -10.1550909

volumetricData refers to physical quantities that vary with spatial position, such as charge density rho, potential
energy function potential, localized charge density elf, partial charge density pcharge, and solvent-bound charge density
rhoBound. This data is stored in the volumetricData type in DS-PAW.

• The write_delta_rho_vesta function is responsible for handling the visualization of differential volumetric-
Data:

dspawpy.io.write.write_delta_rho_vesta(total: str, individuals: list[str], output: str =
'delta_rho.cube', format: str = 'cube', compact: bool =
False, inorm: bool = False, gridsize: Sequence | None =
None, data_type: str | None = 'rho', subtype: str | None =
None)

Charge density differential visualization

8.3. Volumetric Data Processing 191

DS-PAW Manual

DeviceStudio does not currently support large files; it is temporarily written in a format that can be opened
with VESTA.

Parameters

– total – Path to the total charge density file of the system, can be in h5 or json format

– individuals – Paths to the charge density files of each component in the system, can be
in h5 or json format

– output – Output file path, default delta_rho.cube

– format – Output data format, supports cube and vasp, default to cube

– compact – Each data point for each grid is placed on a new line, and the file size is reduced
by reducing the number of spaces (this does not affect the parsing by VESTA software),
default is False

– inorm – Whether to normalize the volume data so that the sum is 1, default is False

– gridsize – Redefined grid number, format as (ngx, ngy, ngz), default is None, use the
original grid number

Returns
A charge density file after the difference of charges (total - individual1 - individual2 -)

Return type
output

Examples

>>> from dspawpy.io.write import write_delta_rho_vesta
>>> write_delta_rho_vesta(total='dspawpy_proj/dspawpy_tests/inputs/supplement/
↪→AB.h5',
... individuals=['dspawpy_proj/dspawpy_tests/inputs/supplement/A.h5',
↪→'dspawpy_proj/dspawpy_tests/inputs/supplement/B.h5'],
... output='dspawpy_proj/dspawpy_tests/outputs/doctest/delta_rho.cube')
==> ...delta_rho.cube...

• The average_along_axis function handles averaging volumetric data along a specific axis:

dspawpy.plot.average_along_axis(datafile: str = 'potential.h5', task: str = 'potential', axis: int = 2,
smooth: bool = False, smooth_frac: float = 0.8, raw: bool = False,
subtype: str | None = None, verbose: bool = False, **kwargs)

Plot the average curve of a physical quantity along a certain axis

Parameters

– datafile – Path to an h5 or json file, or a folder containing any of these files, default
potential.h5

– task – Task type, can be rho, potential, elf, pcharge, rhoBound

– axis – Along which axis to plot the potential curve, default is 2

– smooth – Whether to smooth, default False

– smooth_frac – Smoothing coefficient, default 0.8

– raw – Whether to return plot data to a CSV file

– subtype – Used to specify the task data subtype, default None, representing drawing Po-
tential/TotalElectrostaticPotential

192 8. Auxiliary Tool User Guide

DS-PAW Manual

– **kwargs – Other parameters, passed to matplotlib.pyplot.plot

Returns
Can be passed to other functions for further processing

Return type
axes

Examples

>>> from dspawpy.plot import average_along_axis

Read data from the potential.h5 file, plot, and save the original plot data to a CSV file

>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/3.3/
↪→rho.h5', task='rho', axis=2, smooth=True, smooth_frac=0.8)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/rho_h5.png')
>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/3.3/
↪→rho.json', task='rho', axis=2, smooth=True, smooth_frac=0.8)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/rho_json.png')

>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/2.7/
↪→potential.h5', task='potential', axis=2, smooth=True, smooth_frac=0.8,␣
↪→raw=True)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/potential_h5.png')
>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/2.7/
↪→potential.json', task='potential', axis=2, smooth=True, smooth_frac=0.8)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/potential_json.png')

>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/2.8/
↪→elf.h5', task='elf', axis=2, smooth=True, smooth_frac=0.8)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/elf_h5.png')
>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/2.8/
↪→elf.json', task='elf', axis=2, smooth=True, smooth_frac=0.8)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/elf_json.png')

>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/2.9/
↪→pcharge.h5', task='pcharge', axis=2, smooth=True, smooth_frac=0.8)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/pcharge_h5.png')
>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/2.9/
↪→pcharge.json', task='pcharge', axis=2, smooth=True, smooth_frac=0.8)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/pcharge_json.png')

>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/2.28/
↪→rhoBound.h5', task='rhoBound', axis=2, smooth=True, smooth_frac=0.8)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/rhoBound_h5.png')
>>> plt = average_along_axis(datafile='dspawpy_proj/dspawpy_tests/inputs/2.28/
↪→rhoBound.json', task='rhoBound', axis=2, smooth=True, smooth_frac=0.8)
>>> plt.savefig('dspawpy_proj/dspawpy_tests/outputs/doctest/rhoBound_json.png')

Warning

8.3. Volumetric Data Processing 193

DS-PAW Manual

If you execute the above script by connecting to a remote server via SSH and encounter QT-related error
messages, its possible that the program you are using (e.g., MobaXterm) is incompatible with the QT libraries. You
should either switch programs (e.g., VSCode or the systems built-in terminal command line) or add the following
code, starting from the second line of your Python script:
import matplotlib
matplotlib.use('agg')

8.4 band data processing

Note

1. The script calls get_band_data() to read data, and setting efermi=XX during data reading can shift the energy
zero point to the specified value; setting zero_to_efermi=True can shift the energy zero point to the Fermi
level in the read file.

2. When plotting using pymatgens BSPlotter.get_plot() in the script, you can set zero_to_efermi=True to shift
the energy zero to the Fermi level. Due to a critical update in pymatgen on August 17, 2023, which changed
the return object of the plotting function from plt to axes, subsequent scripts may become incompatible.
Therefore, a conditional statement has been added to handle this in the relevant parts of the users script.

3. For two-step band calculations, obtain the accurate Fermi level from the first-step self-consistent
calculation (from the self-consistent system.json). If this fails, users can modify the energy
zero point when calling get_band_data to read data, using the efermi parameter. For example:
band_data=get_band_data(band.h5,efermi=-1.5)

4. When plotting, the script calls BSPlotter.get_plot from pymatgen. When the system is determined to be
non-metallic, setting zero_to_efermi will consider the VBM as the Fermi level energy, rather than the Fermi
level from the data file. Therefore, when the system is non-metallic, setting zero_to_efermi=True during data
reading and setting zero_to_efermi=True during plotting will result in different plots.

Running the Python script listed in this section, the program will determine whether the system is metallic. If it is
a non-metallic system, you will be prompted to choose whether to shift the Fermi level to the zero energy point; please
follow the prompts.

8.4.1 Conventional Band Treatment
See 4bandplot.py:

1 # coding:utf-8
2 import os
3 import matplotlib.pyplot as plt
4 from pymatgen.electronic_structure.plotter import BSPlotter
5

6 from dspawpy.io.read import get_band_data
7

8 datafile = "dspawpy_proj/dspawpy_tests/inputs/supplement/pband.h5" # Specifies the data␣
↪→file path

9 band_data = get_band_data(
10 band_dir=datafile,
11 syst_dir=None, # path to system.json file, required only when band_dir is a json␣

↪→file
(continues on next page)

194 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

12 efermi=None, # Used for manually correcting the Fermi level
13 zero_to_efermi=True, # For non-metallic systems, the zero point energy should be␣

↪→shifted to the Fermi level
14)
15

16 bsp = BSPlotter(band_data)
17 axes_or_plt = bsp.get_plot(
18 zero_to_efermi=False, # The data has already been shifted when read, so this should␣

↪→be turned off
19 ylim=[-10, 10], # Range of the y-axis for the band structure plot
20 smooth=False, # Whether to smooth the band structure plot
21 vbm_cbm_marker=False, # Whether to mark the valence band maximum and conduction␣

↪→band minimum in the band structure plot
22 smooth_tol=0, # Threshold for smoothing
23 smooth_k=3, # Order of the smoothing process
24 smooth_np=100, # Number of points for smoothing
25)
26

27 if isinstance(axes_or_plt, plt.Axes):
28 fig = axes_or_plt.get_figure() # version newer than v2023.8.10
29 else:
30 fig = axes_or_plt.gcf() # older version pymatgen
31

32 # Add a reference line for the energy zero point
33 for ax in fig.axes:
34 ax.axhline(0, lw=2, ls="-.", color="gray")
35

36 figname = "dspawpy_proj/dspawpy_tests/outputs/us/4bandplot.png" # Filename for the␣
↪→output band plot

37 os.makedirs(os.path.dirname(os.path.abspath(figname)), exist_ok=True)
38 fig.savefig(figname, dpi=300)

Note

For band structure calculations, an accurate Fermi level is required, which is obtained from the self-consistent
calculation (from system.json). If the acquisition fails, users can modify the efermi parameter in the get_band_data
function.

Executing the code will generate a band structure plot similar to the following:

8.4. band data processing 195

DS-PAW Manual

8.4.2 The band is projected onto each element separately, with the size of the data
points representing the elements contribution to the orbital.

See 4bandplot_elt.py:

1 # coding:utf-8
2 import os
3

4 import matplotlib.pyplot as plt
5 import numpy as np
6 from pymatgen.electronic_structure.plotter import BSPlotterProjected
7

8 from dspawpy.io.read import get_band_data
9

10 datafile = "dspawpy_proj/dspawpy_tests/inputs/supplement/pband.h5" # Specify the data␣
↪→file path

11 band_data = get_band_data(
12 band_dir=datafile,
13 syst_dir=None, # path to system.json file, required only when band_dir is a json␣

↪→file
14 efermi=None, # Used to manually adjust the Fermi level
15 zero_to_efermi=True, # For non-metallic systems, shift the zero-point energy to the␣

↪→Fermi level
16)
17

18 bsp = BSPlotterProjected(bs=band_data) # Initialize the BSPlotterProjected class
19 axes_or_plt = bsp.get_elt_projected_plots(
20 zero_to_efermi=False, # The data has already been shifted when read, so this should␣

↪→be disabled
21 ylim=[-8, 5], # Set the energy range
22 vbm_cbm_marker=False, # Whether to mark the conduction band minimum (CBM) and␣

↪→valence band maximum (VBM)
23)

(continues on next page)

196 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

24

25 if isinstance(axes_or_plt, plt.Axes):
26 fig = axes_or_plt.get_figure() # version newer than v2023.8.10
27 elif np.iterable(axes_or_plt):
28 fig = np.asarray(axes_or_plt).flatten()[0].get_figure()
29 else:
30 fig = axes_or_plt.gcf() # older version pymatgen
31

32 # Add a reference line for the energy zero point
33 for ax in fig.axes:
34 ax.axhline(0, lw=2, ls="-.", color="gray")
35

36 figname = "dspawpy_proj/dspawpy_tests/outputs/us/4bandplot_elt.png" # The filename for␣
↪→the output band plot

37 os.makedirs(os.path.dirname(os.path.abspath(figname)), exist_ok=True)
38 fig.savefig(figname, dpi=300)

Note

1. To plot projected band structure data, use the BSPlotterProjected module.

2. Use the get_elt_projected_plots function in the BSPlotterProjected module to plot band diagrams with orbital
contributions for each element.

Executing the code will generate band plots similar to the following:

Warning

If you execute the script above by connecting to a remote server via SSH, and you encounter QT-related error
messages, its possible that the program youre using (such as MobaXterm) is incompatible with the QT libraries.
You can either switch to a different program (e.g., VSCode or the systems built-in terminal command line), or add
the following code, starting on the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.4. band data processing 197

DS-PAW Manual

8.4.3 Band projections onto different elements different orbitals
Refer to 4bandplot_elt_orbit.py:

1 # coding:utf-8
2 import os
3

4 import matplotlib.pyplot as plt
5 import numpy as np
6 from pymatgen.electronic_structure.plotter import BSPlotterProjected
7

8 from dspawpy.io.read import get_band_data
9

10 datafile = "dspawpy_proj/dspawpy_tests/inputs/supplement/pband.h5" # Specify the data␣
↪→file path

11 band_data = get_band_data(
12 band_dir=datafile,
13 syst_dir=None, # path to system.json file, only required when band_dir is a json␣

↪→file
14 efermi=None, # Used for manually correcting the Fermi level
15 zero_to_efermi=True, # For non-metallic systems, shift the zero point energy to the␣

↪→Fermi level
16)
17

18 bsp = BSPlotterProjected(bs=band_data) # Initialize the BSPlotterProjected class
19 # Select elements and orbitals, create a dictionary
20 dict_elem_orbit = {"Mo": ["d"], "S": ["s"]}
21

22 axes_or_plt = bsp.get_projected_plots_dots(
23 dictio=dict_elem_orbit,
24 zero_to_efermi=False, # The data has already been shifted when read, so this should␣

↪→be turned off
25 ylim=[-8, 5], # Set the energy range
26 vbm_cbm_marker=False, # Whether to mark the conduction band minimum and valence␣

↪→band maximum
27)
28

29 if isinstance(axes_or_plt, plt.Axes):
30 fig = axes_or_plt.get_figure() # version newer than v2023.8.10
31 elif np.iterable(axes_or_plt):
32 fig = np.asarray(axes_or_plt).flatten()[0].get_figure()
33 else:
34 fig = axes_or_plt.gcf() # older version pymatgen
35

36 # Add a reference line for the energy zero point
37 for ax in fig.axes:
38 ax.axhline(0, lw=2, ls="-.", color="gray")
39

40 figname = "dspawpy_proj/dspawpy_tests/outputs/us/4bandplot_elt_orbit.png" # Filename␣
↪→for the output band plot

41 os.makedirs(os.path.dirname(os.path.abspath(figname)), exist_ok=True)
42 fig.savefig(figname, dpi=300)

198 8. Auxiliary Tool User Guide

DS-PAW Manual

Note

1. Use the get_projected_plots_dots method in the BSPlotterProjected module, which allows users to customize
the band structure plots by specifying elements and orbitals (L) to be plotted.

2. For example, get_projected_plots_dots({Mo: [d], S: [s]}) plots the d-orbitals of Mo and the s-orbitals of S.

Executing the code will generate a band structure plot similar to the following:

Warning

If you execute the above script by connecting to a remote server via SSH, and QT-related error messages appear,
it may be due to incompatibility between the program used (e.g., MobaXterm) and the QT library. Either change
the program (e.g., VSCode or the systems built-in terminal command line), or add the following code starting from
the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.4.4 Projecting band structure onto different atomic orbitals
See 4bandplot_patom_porbit.py:

8.4. band data processing 199

DS-PAW Manual

1 # coding:utf-8
2 import os
3

4 import matplotlib.pyplot as plt
5 import numpy as np
6 from pymatgen.electronic_structure.plotter import BSPlotterProjected
7

8 from dspawpy.io.read import get_band_data
9

10 datafile = "dspawpy_proj/dspawpy_tests/inputs/supplement/pband.h5" # Specify␣
↪→the data file path

11 band_data = get_band_data(
12 band_dir=datafile,
13 syst_dir=None, # path to system.json file, required only when band_dir is␣

↪→a JSON file
14 efermi=None, # Used to manually adjust the Fermi level
15 zero_to_efermi=True, # For non-metallic systems, shift the zero point␣

↪→energy to the Fermi level
16)
17

18 bsp = BSPlotterProjected(bs=band_data)
19 # Specify elements, orbitals, and atomic numbers
20 dict_elem_orbit = {"Mo": ["px", "py", "pz"]}
21 dict_elem_index = {"Mo": [1]}
22

23 axes_or_plt = bsp.get_projected_plots_dots_patom_pmorb(
24 dictio=dict_elem_orbit, # Specify the element-orbit dictionary
25 dictpa=dict_elem_index, # Specify the element-atomic number dictionary
26 sum_atoms=None, # Whether to sum over atoms
27 sum_morbs=None, # Whether to sum orbitals
28 zero_to_efermi=False, # Data has already been shifted during reading,␣

↪→should be turned off here
29 ylim=None, # Set the energy range
30 vbm_cbm_marker=False, # Whether to mark the conduction band minimum and␣

↪→valence band maximum
31 selected_branches=None, # Specify the energy band branches to be plotted
32 w_h_size=(12, 8), # Set image width and height
33 num_column=None, # Number of images displayed per row
34)
35

36 if isinstance(axes_or_plt, plt.Axes):
37 fig = axes_or_plt.get_figure() # version newer than v2023.8.10
38 elif np.iterable(axes_or_plt):
39 fig = np.asarray(axes_or_plt).flatten()[0].get_figure()
40 else:
41 fig = axes_or_plt.gcf() # older version pymatgen
42

43 # Add a reference line for the energy zero point
44 for ax in fig.axes:
45 ax.axhline(0, lw=2, ls="-.", color="gray")
46

47 figname = " dspawpy_proj/dspawpy_tests/outputs/us/4band_patom_porbit.png" #␣
↪→Output bandpass figure filename

(continues on next page)

200 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

48 os.makedirs(os.path.dirname(os.path.abspath(figname)), exist_ok=True)
49 fig.savefig(figname, dpi=300)

Note

1. The get_projected_plots_dots_patom_pmorb function in the BSPlotterProjected module offers greater flexi-
bility, allowing users to customize the band diagrams for specific atoms and orbitals.

2. Use dictpa to specify the atom, and dictio to specify the orbitals of that atom.

3. To superimpose projected components of some atoms or orbitals, specify the sum_atoms or sum_morbs
parameters according to the documentation of the get_projected_plots_dots_patom_pmorb function.

Warning

1. If only a single orbital is selected and the orbital name has more than one letter (e.g., px, dxy, dxz), the
get_projected_plots_dots_patom_pmorb function will raise an error. See here for details.

Executing the code will generate band diagrams similar to the following:

8.4. band data processing 201

https://github.com/materialsproject/pymatgen/issues/699

DS-PAW Manual

Warning

If you execute the above script by connecting to a remote server via SSH, and you encounter QT-related error
messages, its possible that the program youre using (e.g., MobaXterm) is incompatible with the QT libraries. Either
switch to another program (e.g., VSCode or the systems built-in terminal command line), or add the following code
starting from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.4.5 Band unfolding processing
See 4bandunfolding.py:

1 # coding:utf-8
2 import os
3

4 from dspawpy.plot import plot_bandunfolding
5

6 plt = plot_bandunfolding(
7 datafile="dspawpy_proj/dspawpy_tests/inputs/2.22.1/band.h5", # Read data
8 ef=None, # Fermi level, read from the file
9 de=0.05, # Band width, default 0.05

10 dele=0.06, # Band gap, default 0.06
11)
12

13 plt.ylim(-15, 10)
14 figname = "dspawpy_proj/dspawpy_tests/outputs/us/4bandunfolding.png" # Output band␣

↪→structure plot filename
15 os.makedirs(os.path.dirname(os.path.abspath(figname)), exist_ok=True)
16 plt.savefig(figname, dpi=300)
17 # plt.show()

Executing the code yields a band diagram similar to the following:

202 8. Auxiliary Tool User Guide

DS-PAW Manual

Warning

Warning

This feature currently does not support setting the Fermi level of non-metallic materials as the zero-energy point
(the default is the valence band top as the zero-energy point).

Warning

If you execute the above script by connecting to a remote server via SSH and encounter QT-related error
messages, it might be due to incompatibility between the program used (such as MobaXterm, etc.) and the QT
library. You can either switch programs (e.g., VSCode or the systems built-in terminal) or add the following code
starting from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.4.6 band-compare band structure comparison figure processing
Plotting regular band structure and Wannier band structure on the same figure.

Refer to 4bandcompare.py:

8.4. band data processing 203

DS-PAW Manual

1 # coding:utf-8
2 import os
3

4 from pymatgen.electronic_structure.plotter import BSPlotter
5

6 from dspawpy.io.read import get_band_data
7

8 band_data = get_band_data(
9 band_dir="dspawpy_proj/dspawpy_tests/inputs/2.30/wannier.h5", # Wannier band file␣

↪→path
10 syst_dir=None, # system.json file path, only needed when band_dir is a json file
11 efermi=None, # Used for manually adjusting the Fermi level
12 zero_to_efermi=False, # Whether to shift zero energy to the Fermi level
13)
14 bsp = BSPlotter(bs=band_data)
15 band_data = get_band_data(
16 band_dir="dspawpy_proj/dspawpy_tests/inputs/2.3/band.h5", # Read DFT band structure
17 syst_dir=None, # path to system.json file, required only when band_dir is a json␣

↪→file
18 efermi=None, # Used for manually correcting the Fermi level
19 zero_to_efermi=False, # Whether to shift the zero point energy to the Fermi level
20)
21

22 bsp2 = BSPlotter(bs=band_data)
23 bsp.add_bs(bsp2._bs)
24 axes_or_plt = bsp.get_plot(
25 zero_to_efermi=True, # Move the zero energy level to the Fermi level
26 ylim=[-10, 10], # Energy band plot y-axis range
27 smooth=False, # Whether to smooth the band structure plot
28 vbm_cbm_marker=False, # Whether to mark the valence band maximum and conduction␣

↪→band minimum in the band structure plot
29 smooth_tol=0, # Threshold for smoothing
30 smooth_k=3, # Order of the smoothing process
31 smooth_np=100, # Number of points for smoothing
32 bs_labels=["wannier interpolated", "DFT"], # Band structure labels
33)
34

35 import matplotlib.pyplot as plt # noqa: E402
36

37 if isinstance(axes_or_plt, plt.Axes):
38 fig = axes_or_plt.get_figure() # version newer than v2023.8.10
39 else:
40 fig = axes_or_plt.gcf() # older version pymatgen
41

42 # Add a reference line for the energy zero point
43 for ax in fig.axes:
44 ax.axhline(0, lw=2, ls="-.", color="gray")
45

46 figname = "dspawpy_proj/dspawpy_tests/outputs/us/4wanierBand.png" # File name for the␣
↪→output band structure plot

47 os.makedirs(os.path.dirname(os.path.abspath(figname)), exist_ok=True)
48 fig.savefig(figname, dpi=300)

204 8. Auxiliary Tool User Guide

DS-PAW Manual

Executing the code will generate band comparison curves similar to the following:

API: get_band_data()

• The get_band_data function is responsible for reading band structure data as follows:

dspawpy.io.read.get_band_data(band_dir: str, syst_dir: str | None = None, efermi: float | None = None,
zero_to_efermi: bool = False, verbose: bool = False)→
BandStructureSymmLine

Reads band structure data from an h5 or json file and constructs a BandStructureSymmLine object.

Parameters

– band_dir –

∗ Path to the band structure file, band.h5 / band.json, or a directory containing band.h5 /
band.json

∗ Note that wannier.h5 can also be read using this function, but band_dir does not support
folder types

– syst_dir – Path to system.json, prepared only for auxiliary processing of Wannier data
(structure and Fermi level are read from it)

– efermi – Fermi level, if the Fermi level in the h5 file is incorrect, it can be specified using
this parameter

– zero_to_efermi – Whether to shift the Fermi level to 0

Return type
BandStructureSymmLine

8.4. band data processing 205

DS-PAW Manual

Examples

>>> from dspawpy.io.read import get_band_data
>>> band = get_band_data(band_dir='dspawpy_proj/dspawpy_tests/inputs/2.3/band.h5
↪→')
>>> band = get_band_data(band_dir='dspawpy_proj/dspawpy_tests/inputs/2.4/band.h5
↪→')
>>> band = get_band_data(band_dir='dspawpy_proj/dspawpy_tests/inputs/2.4/band.
↪→json')

If you want to process Wannier band structures by specifying wannier.json, you need to additionally specify
the syst_dir parameter.

>>> band = get_band_data(band_dir='dspawpy_proj/dspawpy_tests/inputs/2.30/
↪→wannier.h5')
>>> band = get_band_data(band_dir='dspawpy_proj/dspawpy_tests/inputs/2.30/
↪→wannier.json', syst_dir='dspawpy_proj/dspawpy_tests/inputs/2.30/system.json')

Warning

If you are running the above script by connecting to a remote server via SSH and encounter QT-related error
messages, it may be due to incompatibility between the program you are using (such as MobaXterm, etc.) and the
QT libraries. You can either switch to another program (such as VSCode or the systems built-in terminal), or add
the following code, starting from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.5 DOS Data Processing

8.5.1 Total Density of States
See 5dosplot_total.py:

1 # coding:utf-8
2 import os
3

4 from pymatgen.electronic_structure.plotter import DosPlotter
5

6 from dspawpy.io.read import get_dos_data
7 from dspawpy.plot import plot_dos
8

9 dos_data = get_dos_data(
10 dos_dir="dspawpy_proj/dspawpy_tests/inputs/3.2.4/dos.h5", # Read projected density␣

↪→of states data
11 return_dos=False, # If False, always return a CompleteDos object (regardless of␣

↪→whether projection was enabled during calculation)
12)
13 dos_plotter = DosPlotter(
14 zero_at_efermi=True, # Whether to set the Fermi level as the zero point
15 stack=False, # True indicates drawing an area chart
16 sigma=None, # Gaussian broadening, None indicates no smoothing process

(continues on next page)

206 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

17)
18 dos_plotter.add_dos(
19 label="total dos", dos=dos_data
20) # Set the legend for the density of states plot # Pass the density of states data
21

22 ax = plot_dos(
23 dosplotter=dos_plotter,
24 xlim=[-10, 5], # Set the energy range
25 ylim=[-15, 15], # Set the density of states range
26)
27 ax.axhline(0, lw=2, ls="-.", color="gray")
28

29 filename = "dspawpy_proj/dspawpy_tests/outputs/us/5dos_total.png" # File name for the␣
↪→output density of states plot

30 os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
31

32 fig = ax.get_figure()
33 fig.savefig(filename, dpi=300)

Note

1. Use the get_dos_data function to convert the dos.h5 file obtained from DS-PAW calculations into a format
supported by pymatgen.

2. Use the DosPlotter module to obtain the data from the DS-PAW calculated dos.h5 file.

3. The DosPlotter function can pass parameters: the stack parameter indicates whether to fill the DOS plots,
and zero_at_efermi indicates whether to set the Fermi energy to zero in the DOS plot. Here, stack=False and
zero_at_efermi=False are set.

4. Use add_dos in the DosPlotter module to add the DOS data.

5. Use the get_plot function in the DosPlotter module to plot the DOS.

Executing the code will generate a density of states plot similar to the following:

8.5. DOS Data Processing 207

DS-PAW Manual

Warning

If you execute the above script by connecting to a remote server via SSH and encounter QT-related error
messages, its likely that the program youre using (such as MobaXterm, etc.) is incompatible with the QT libraries.
You can either switch programs (e.g., VSCode or the systems built-in terminal command line), or add the following
code starting from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.5.2 Project Density of States onto different orbitals
See 5dosplot_spd.py:

1 # coding:utf-8
2 import os
3

4 from pymatgen.electronic_structure.plotter import DosPlotter
5

6 from dspawpy.io.read import get_dos_data
7 from dspawpy.plot import plot_dos
8

9 dos_data = get_dos_data(
10 dos_dir="dspawpy_proj/dspawpy_tests/inputs/3.2.4/dos.h5", # Read projected DOS data
11 return_dos=False, # If False, always return a CompleteDos object (regardless of␣

↪→whether projection was enabled during calculation)
12)
13 dos_plotter = DosPlotter(
14 zero_at_efermi=True, # Whether to set the Fermi level as the zero point
15 stack=False, # True indicates drawing an area chart
16 sigma=None, # Gaussian broadening, None indicates no smoothing is applied
17)

(continues on next page)

208 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

18 dos_plotter.add_dos_dict(
19 dos_dict=dos_data.get_spd_dos(),
20 key_sort_func=None, # Orbital projection # Specifies the sorting function
21)
22 ax = plot_dos(
23 dosplotter=dos_plotter,
24 xlim=[-10, 5], # Set the energy range
25 ylim=None, # Set the density of states range
26)
27

28 ax.axhline(0, lw=2, ls="-.", color="gray")
29

30 filename = "dspawpy_proj/dspawpy_tests/outputs/us/5dos_spd.png" # Filename of the␣
↪→output density of states plot

31 os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
32

33 fig = ax.get_figure()
34 fig.savefig(filename, dpi=300)

Note

Use the add_dos_dict function in the DosPlotter module to obtain the projected density of states (DOS) data,
and then use get_spd_dos to project the information onto spd orbitals.

The code execution will produce a density of states plot similar to the following:

Warning

If you encounter QT-related error messages when executing the above script via SSH connection to a remote

8.5. DOS Data Processing 209

DS-PAW Manual

server, it might be due to incompatibility between the program used (e.g., MobaXterm) and the QT library. Either
change the program (e.g., VSCode or the systems built-in terminal command line), or add the following code starting
from the second line of your Python script:
import matplotlib
matplotlib.use('agg')

8.5.3 Projecting the density of states onto different elements
See also 5dosplot_elt.py:

1 # coding:utf-8
2 import os
3

4 from pymatgen.electronic_structure.plotter import DosPlotter
5

6 from dspawpy.io.read import get_dos_data
7 from dspawpy.plot import plot_dos
8

9 dos_data = get_dos_data(
10 dos_dir="dspawpy_proj/dspawpy_tests/inputs/3.2.4/dos.h5", # Reads projected DOS data
11 return_dos=False, # If False, always returns a CompleteDos object (regardless of␣

↪→whether projection was enabled during calculation)
12)
13 dos_plotter = DosPlotter(
14 zero_at_efermi=True, # Whether to set the Fermi level as the zero point
15 stack=False, # True indicates drawing an area chart
16 sigma=None, # Gaussian broadening, None indicates no smoothing is applied
17)
18 dos_plotter.add_dos_dict(
19 dos_dict=dos_data.get_element_dos(),
20 key_sort_func=None, # Projected DOS for elements # Specify the sorting function
21)
22

23 ax = plot_dos(
24 dosplotter=dos_plotter,
25 xlim=[-10, 5], # Set the energy range
26 ylim=None, # Set the density of states range
27)
28 ax.axhline(0, lw=2, ls="-.", color="gray")
29

30 filename = "dspawpy_proj/dspawpy_tests/outputs/us/5dos_elt.png" # Filename for the␣
↪→output density of states plot

31 os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
32

33 fig = ax.get_figure()
34 fig.savefig(filename, dpi=300)

Note

Use the add_dos_dict function in the DosPlotter module to obtain projected density of states data, then use
get_element_dos to output the projected information according to different elements.

210 8. Auxiliary Tool User Guide

DS-PAW Manual

The code execution will produce a density of states plot similar to the following:

Warning

If you encounter QT-related error messages when executing the above script via SSH connection to a remote
server, it might be due to incompatibility between the program used (e.g., MobaXterm) and the QT library. Either
change the program (e.g., VSCode or the systems built-in terminal command line), or add the following code starting
from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.5.4 Projecting the density of states onto different orbitals of different atoms
See 5dosplot_atom_orbit.py:

1 # coding:utf-8
2 import os
3

4 from pymatgen.electronic_structure.core import Orbital
5 from pymatgen.electronic_structure.plotter import DosPlotter
6

7 from dspawpy.io.read import get_dos_data
8 from dspawpy.plot import plot_dos
9

10 dos_data = get_dos_data(
11 dos_dir="dspawpy_proj/dspawpy_tests/inputs/3.2.4/dos.h5", # Reads projected density␣

↪→of states data
12 return_dos=False, # If False, always return a CompleteDos object (regardless of␣

↪→whether projection was enabled during calculation)
13)
14 dos_plotter = DosPlotter(

(continues on next page)

8.5. DOS Data Processing 211

DS-PAW Manual

(continued from previous page)

15 zero_at_efermi=True, # Whether to set the Fermi level as the zero point
16 stack=False, # True indicates drawing an area plot
17 sigma=None, # Gaussian broadening, None indicates no smoothing treatment
18)
19

20 # ! Specify atomic number and orbital
21 dict_index_orbit = {0: ["dxy"], 2: ["s"]}
22

23 print("Plotting...")
24 for index in dict_index_orbit:
25 _os = dict_index_orbit[index]
26 _e = str(dos_data.structure.sites[index].species)
27 for _orb in _os:
28 dos_plotter.add_dos(
29 f"{_e}(atom-{index}) {_orb}", # label
30 dos_data.get_site_orbital_dos(
31 dos_data.structure[index],
32 getattr(Orbital, _orb),
33),
34)
35

36 ax = plot_dos(
37 dosplotter=dos_plotter,
38 xlim=[-10, 5], # Set the energy range
39 ylim=None, # Set the density of states range
40)
41 ax.axhline(0, lw=2, ls="-.", color="gray")
42

43 figname = "dspawpy_proj/dspawpy_tests/outputs/us/5dos_atom_orbit.png" # Output density␣
↪→of states figure filename

44 os.makedirs(os.path.dirname(os.path.abspath(figname)), exist_ok=True)
45

46 fig = ax.get_figure()
47 fig.savefig(figname, dpi=300)

Note

1. Use the get_site_orbital_dos function to extract the contribution of a specific atom and specific orbital from
the DOS data. dos_data.structure[0], Orbital(4) represents obtaining the density of states for the dxy orbital
of the first atom; the index in the get_site_orbital_dos function starts from 0.

2. Running this script and selecting the element and orbital as prompted will generate the corresponding density
of states (DOS) plot.

Executing the code will produce a density of states plot similar to the following:

212 8. Auxiliary Tool User Guide

DS-PAW Manual

Warning

If you encounter QT-related error messages when executing the above script via SSH connection to a remote
server, its likely due to incompatibility between the program youre using (e.g., MobaXterm) and the QT library.
Either switch to a different program (such as VSCode or the systems built-in terminal command line), or add the
following code to your Python script starting from the second line:

import matplotlib
matplotlib.use('agg')

8.5.5 Projecting the density of states onto the split d-orbitals (t2g, eg) of different
atoms

See also 5dosplot_t2g_eg.py:

1 # coding:utf-8
2 import os
3

4 from pymatgen.electronic_structure.plotter import DosPlotter
5

6 from dspawpy.io.read import get_dos_data
7 from dspawpy.plot import plot_dos
8

9 dos_data = get_dos_data(
10 dos_dir="dspawpy_proj/dspawpy_tests/inputs/3.2.4/dos.h5", # Read projected density␣

↪→of states data
11 return_dos=False, # If False, always returns a CompleteDos object (regardless of␣

↪→whether projection was enabled during calculation)
12)
13 dos_plotter = DosPlotter(
14 zero_at_efermi=True, # Whether to set the Fermi level as the zero point

(continues on next page)

8.5. DOS Data Processing 213

DS-PAW Manual

(continued from previous page)

15 stack=False, # True indicates drawing an area chart
16 sigma=None, # Gaussian broadening, None indicates no smoothing is applied
17)
18 # print(dos_data.structure)
19

20 # Specify the atomic number, starting from 0
21 ais = [1]
22

23 print("Plotting...")
24 atom_indices = [int(ai) for ai in ais]
25 for atom_index in atom_indices:
26 dos_plotter.add_dos_dict(
27 dos_data.get_site_t2g_eg_resolved_dos(dos_data.structure[atom_index]),
28)
29

30 ax = plot_dos(
31 dosplotter=dos_plotter,
32 xlim=[-10, 5], # Set the energy range
33 ylim=None, # Set the density of states range
34)
35 ax.axhline(0, lw=2, ls="-.", color="gray")
36

37 filename = "dspawpy_proj/dspawpy_tests/outputs/us/5dos_t2g_eg.png" # Output density of␣
↪→states plot filename

38 os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
39

40 fig = ax.get_figure()
41 fig.savefig(filename, dpi=300)

Note

1. Use the get_site_t2g_eg_resolved_dos function to extract the t2g and eg orbital contributions for a specific
atom from the DOS data. This retrieves the t2g and eg orbital contributions for the second atom.

2. Running this script and selecting an atom number as prompted will generate the corresponding density of
states plot.

Executing the code will generate a density of states plot similar to the following:

214 8. Auxiliary Tool User Guide

DS-PAW Manual

Note

If the element does not contain d orbitals, a blank image will be drawn.

Warning

If you execute the script above by connecting to a remote server via SSH and encounter QT-related error
messages, its likely that the program you are using (such as MobaXterm) is incompatible with the QT library. You
can either switch programs (e.g., VSCode or the systems built-in terminal command line) or add the following code
starting from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.5.6 d-centered analysis
Taking the Pb-slab system as an example, a d-band center analysis is performed on Pt atoms:

See 5center_dband.py:

1 # coding:utf-8
2 from dspawpy.io.read import get_dos_data
3 from dspawpy.io.utils import d_band
4

5 dos_data = get_dos_data(
6 dos_dir="dspawpy_proj/dspawpy_tests/inputs/supplement/dos.h5", # Read projected␣

↪→density of states data
7 return_dos=False, # If False, always returns a CompleteDos object (regardless of␣

↪→whether projection was enabled during calculation)
8)
9 for spin in dos_data.densities:

(continues on next page)

8.5. DOS Data Processing 215

DS-PAW Manual

(continued from previous page)

10 print("spin=", spin)
11 c = d_band(spin, dos_data)
12 print(c)

Executing the code yields results similar to the following:

spin=1
-1.785319344084034

Note

Currently, only the d-orbital center averaged over all atoms is supported. Element-resolved, atom-projected,
or other orbitals are not supported, nor is the selection of spin direction or energy range.

The get_dos_data function is responsible for processing density of states data:

API: get_dos_data()

dspawpy.io.read.get_dos_data(dos_dir: str, return_dos: bool = False, verbose: bool = False)
Read density of states (DOS) data from an h5 or json file, and construct a CompleteDos or DOS object

Parameters

• dos_dir – Path to the density of states file, dos.h5 / dos.json, or a folder containing dos.h5
/ dos.json

• return_dos (bool, optional) – Whether to return the DOS object. If False, a Com-
pleteDos object is returned uniformly (regardless of whether projection was enabled during
calculation)

Return type
CompleteDos or Dos

Examples

>>> from dspawpy.io.read import get_dos_data
>>> dos = get_dos_data(dos_dir='dspawpy_proj/dspawpy_tests/inputs/2.5/dos.h5')
>>> dos = get_dos_data(dos_dir='dspawpy_proj/dspawpy_tests/inputs/2.5/dos.h5',␣
↪→return_dos=True)

8.6 bandDos: Displaying Band Structure and Density of States To-
gether

Using the Si system from the application tutorial as an example:

8.6.1 Display band structure and density of states in a single figure.
See 6bandDosplot.py:

1 # coding:utf-8
2 import os

(continues on next page)

216 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

3

4 import numpy as np
5 from matplotlib.axes import Axes
6 from pymatgen.electronic_structure.plotter import BSDOSPlotter
7

8 from dspawpy.io.read import get_band_data, get_dos_data
9

10 bandfile = "dspawpy_proj/dspawpy_tests/inputs/2.3/band.h5" # Normal band data
11 band_data = get_band_data(
12 band_dir=bandfile,
13 syst_dir=None, # path to system.json file, required only when band_dir is a json␣

↪→file
14 efermi=None, # Used for manually correcting the Fermi level
15)
16 band_efermi = band_data.efermi
17 dosfile = "dspawpy_proj/dspawpy_tests/inputs/2.5/dos.h5" # Density of states data
18 dos_data = get_dos_data(
19 dos_dir=dosfile,
20 return_dos=False, # If False, always return a CompleteDos object (regardless of␣

↪→whether projection was enabled during calculation)
21)
22 dos_efermi = dos_data.efermi
23 bdp = BSDOSPlotter(
24 bs_projection=None, # Band structure projection method, None means no projection
25 dos_projection=None, # Projection method for density of states, None means no␣

↪→projection
26 vb_energy_range=4, # Valence band energy range
27 cb_energy_range=4, # Conduction band energy range
28 fixed_cb_energy=False, # Whether to fix the conduction band energy range
29 egrid_interval=1, # Energy grid interval
30 font="DejaVu Sans", # Default is Times New Roman, change to DejaVu Sans to avoid␣

↪→warnings due to missing font on Linux
31 axis_fontsize=20, # Axis font size
32 tick_fontsize=15, # Tick label font size
33 legend_fontsize=14, # Legend font size
34 bs_legend="best", # Band structure legend position
35 dos_legend="best", # Density of States legend position
36 rgb_legend=True, # Use colored legend
37 fig_size=(11, 8.5), # Figure size
38)
39 if band_efermi != dos_efermi:
40 print(f"{band_efermi=:.4f} eV")
41 print(f"{dos_efermi=:.4f} eV")
42 d_efermi = band_efermi - dos_efermi
43

44 print(
45 "! Band and DOS Fermi levels are inconsistent, using DOS Fermi level as reference

↪→"
46)
47 band_data.bands = {spin: v + d_efermi for spin, v in band_data.bands.items()}
48

49 # ! Band and DOS Fermi levels are inconsistent, using Band level as the reference

(continues on next page)

8.6. bandDos: Displaying Band Structure and Density of States Together 217

DS-PAW Manual

(continued from previous page)

50 # dos_data.energies -= d_efermi
51

52 axes_or_plt = bdp.get_plot(
53 bs=band_data, dos=dos_data
54) # Pass band data # Pass density of states data
55

56 if isinstance(axes_or_plt, Axes):
57 fig = axes_or_plt.get_figure() # version newer than v2023.8.10
58 elif np.iterable(axes_or_plt):
59 fig = np.asarray(axes_or_plt).flatten()[0].get_figure()
60 else:
61 fig = axes_or_plt.gcf() # older version pymatgen
62

63 filename = "dspawpy_proj/dspawpy_tests/outputs/us/6bandDos.png" # Filename for the band␣
↪→structure - density of states plot output

64 os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
65 fig.savefig(filename, dpi=300)
66 print("==> Saved", filename)

Executing the code yields a band density of states plot similar to the following:

218 8. Auxiliary Tool User Guide

DS-PAW Manual

Warning

If you are connecting to a remote server via SSH and running the above script, and you encounter QT-related
error messages, its possible that the program you are using (such as MobaXterm) is incompatible with the QT
libraries. You should either switch programs (e.g., VSCode or the systems built-in terminal command line) or add
the following code starting from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.6.2 Display band structure and projected density of states on a single plot.
See 6bandPdosplot.py:

1 # coding:utf-8
2 import os
3

4 import numpy as np
5 from matplotlib.axes import Axes
6 from pymatgen.electronic_structure.plotter import BSDOSPlotter
7

8 from dspawpy.io.read import get_band_data, get_dos_data
9

10 bandfile = "dspawpy_proj/dspawpy_tests/inputs/2.4/band.h5" # Normal band data
11 band_data = get_band_data(
12 band_dir=bandfile,
13 syst_dir=None, # path to system.json file, required only when band_dir is a json␣

↪→file
14 efermi=None, # Used for manually correcting the Fermi level
15)
16 band_efermi = band_data.efermi
17 dosfile = (
18 "dspawpy_proj/dspawpy_tests/inputs/2.6/dos.h5" # DOS data for projected states
19)
20 dos_data = get_dos_data(
21 dos_dir=dosfile,
22 return_dos=False, # If False, always return a CompleteDos object (regardless of␣

↪→whether projection was enabled during calculation)
23)
24 dos_efermi = dos_data.efermi
25 bdp = BSDOSPlotter(
26 bs_projection="elements", # Projection method for band structure, None means no␣

↪→projection
27 dos_projection="elements", # Project DOS onto elements
28 vb_energy_range=4, # Valence band energy range
29 cb_energy_range=4, # Conduction band energy range
30 fixed_cb_energy=False, # Whether to fix the conduction band energy range
31 egrid_interval=1, # Energy grid interval
32 font="DejaVu Sans", # Default is Times New Roman, can be changed to DejaVu Sans to␣

↪→avoid warnings due to font not being installed on Linux
33 axis_fontsize=20, # Axis font size
34 tick_fontsize=15, # Tick label font size

(continues on next page)

8.6. bandDos: Displaying Band Structure and Density of States Together 219

DS-PAW Manual

(continued from previous page)

35 legend_fontsize=14, # Legend font size
36 bs_legend="best", # Band structure legend position
37 dos_legend="best", # Position of the projected density of states legend
38 rgb_legend=True, # Use colored legend
39 fig_size=(11, 8.5), # Figure size
40)
41 if band_efermi != dos_efermi:
42 print(f"{band_efermi=:.4f} eV")
43 print(f"{dos_efermi=:.4f} eV")
44 d_efermi = band_efermi - dos_efermi
45

46 print(
47 "! Band and DOS Fermi levels are inconsistent, using DOS Fermi level as reference

↪→"
48)
49 band_data.bands = {spin: v + d_efermi for spin, v in band_data.bands.items()}
50

51 # ! Band and DOS Fermi levels are inconsistent, using Band level as reference
52 # dos_data.energies -= d_efermi
53

54 axes_or_plt = bdp.get_plot(
55 bs=band_data,
56 dos=dos_data,
57) # Pass band structure data # Pass projected density of states data
58

59 if isinstance(axes_or_plt, Axes):
60 fig = axes_or_plt.get_figure() # version newer than v2023.8.10
61 elif np.iterable(axes_or_plt):
62 fig = np.asarray(axes_or_plt).flatten()[0].get_figure()
63 else:
64 fig = axes_or_plt.gcf() # older version pymatgen
65

66 filename = "dspawpy_proj/dspawpy_tests/outputs/us/6bandPdos.png" # filename for the␣
↪→band structure-projected density of states plot

67 os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
68 fig.savefig(filename, dpi=300)
69 print("==> Saved", filename)

Executing the code yields a band-decomposed density of states plot similar to the following:

220 8. Auxiliary Tool User Guide

DS-PAW Manual

Warning

1. Given projected band data, it will be projected along the element by default; given ordinary band data (or if
the system contains more than 4 types of elements), it will not be projected and a warning will be output.

2. Given projected density of states (PDOS) data, projection along elements is also the default. You can switch
to projection along orbitals, or no projection at all. For ordinary density of states (DOS) data and without
disabling the DOS projection option BSDOSPlotter(dos_projection=None), the pymatgen plotting program
will report an error, which is why a 6bandDosplot.py file was specifically prepared, as mentioned above.

Warning

If you execute the above script by connecting to a remote server via SSH and encounter QT-related error
messages, its likely due to incompatibility between the program you are using (e.g., MobaXterm) and the QT
library. Either switch to a different program (such as VSCode or the systems built-in terminal command line), or
add the following code starting from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.6. bandDos: Displaying Band Structure and Density of States Together 221

DS-PAW Manual

8.7 optical data processing
Using the scf.h5 file obtained from a quick start calculation of the optical properties of the Si system as an example

(Note: the output file name is the same as the task, task = scf; io.optical = true can calculate optical properties):

Processing the reflectivity data, referring to 7optical.py:

1 # coding:utf-8
2 from dspawpy.plot import plot_optical
3

4 plot_optical(
5 datafile="dspawpy_proj/dspawpy_tests/inputs/2.12/scf.h5",
6 keys=["ExtinctionCoefficient", "Reflectance"],
7 axes=["X"], # ["X", "Y", "Z", "XY", "YZ", "ZX"]
8 prefix="dspawpy_proj/dspawpy_tests/outputs/optical", # Where to save, if empty, it␣

↪→means the current folder
9 save=True, # Whether to save the image with the tool's name, if False, please refer␣

↪→to the script below to save manually
10)
11

12 # The above function will plot and save the images of ExtinctionCoefficient and␣
↪→Reflectance separately

13 # To plot multiple properties on the same figure, uncomment the following code and set␣
↪→the save parameter above to False

14

15 # import os
16 # import matplotlib.pyplot as plt
17 #
18 # plt.tick_params(labelsize=16)
19 # plt.tight_layout()
20 # filename = "outputs/us/7optical.png" # Filename for the output optical properties plot
21 # os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
22 # plt.savefig(filename, dpi=300)

Note

Reflectance is an optical property, and users can modify this keyword to AbsorptionCoefficient, ExtinctionCo-
efficient, or RefractiveIndex based on their needs, corresponding to the absorption coefficient, extinction coefficient,
and refractive index, respectively.

Executing the code will generate a curve showing the reflectance as a function of energy, similar to the following:

222 8. Auxiliary Tool User Guide

DS-PAW Manual

API: plot_optical()

dspawpy.plot.plot_optical(datafile: str = 'optical.h5', keys: List[str] = ['AbsorptionCoefficient',
'ExtinctionCoefficient', 'RefractiveIndex', 'Reflectance'], axes: List[str] = ['X', 'Y',
'Z', 'XY', 'YZ', 'ZX'], raw: bool = False, prefix: str = '', save: bool = True, verbose:
bool = False)

After the optical property calculation task is completed, read the data and draw a preview image

optical.h5/optical.json -> optical.png

Parameters

• datafile – Path to an h5 or json file, or a folder containing any of these files, default opti-
cal.h5

• keys – One of AbsorptionCoefficient, ExtinctionCoefficient, RefractiveIndex, Reflectance,
default AbsorptionCoefficient

• axes – Index, default X, Y, Z, XY, YZ, ZX

• raw – Whether to save plot data to CSV

• prefix – Folder path to save images, if empty, saves in the current directory

• save – Whether to save the image, default is True

Examples

Plot and save the plot data to rawoptical.csv

>>> from dspawpy.plot import plot_optical
>>> plot_optical("dspawpy_proj/dspawpy_tests/inputs/2.12/scf.h5",
↪→"AbsorptionCoefficient", ['X', 'Y'], prefix='dspawpy_proj/dspawpy_tests/outputs/
↪→doctest')
>>> plot_optical("dspawpy_proj/dspawpy_tests/inputs/2.12/optical.json", [
↪→"AbsorptionCoefficient"], ['X', 'Y'], prefix='dspawpy_proj/dspawpy_tests/outputs/
↪→doctest', raw=True)

8.7. optical data processing 223

DS-PAW Manual

Warning

If you execute the above script by connecting to a remote server via SSH and encounter QT-related error
messages, it is likely that the program you are using (such as MobaXterm, etc.) is incompatible with the QT
libraries. You can either switch to another program (such as VSCode or the systems built-in terminal command
line) or add the following code to your Python script, starting from the second line:

import matplotlib
matplotlib.use('agg')

8.8 neb data processing
Lets start with a quick introduction using the H diffusion on Pt(100) surface example:

8.8.1 Generating intermediate configurations for input files
• See 8neb_interpolate_structures.py:

1 # coding:utf-8
2 from dspawpy.diffusion.neb import NEB, write_neb_structures
3 from dspawpy.diffusion.nebtools import write_json_chain
4 from dspawpy.io.structure import read
5

6 # Read initial configuration
7 init_struct = read("dspawpy_proj/dspawpy_tests/inputs/2.15/00/structure00.as")[0]
8 # Read final state configuration
9 final_struct = read("dspawpy_proj/dspawpy_tests/inputs/2.15/04/structure04.as")[0]

10

11 neb = NEB(
12 initial_structure=init_struct, # Initial structure
13 final_structure=final_struct, # Final state configuration
14 nimages=8, # Total of 8 configurations, including initial and final states
15)
16 structures = neb.linear_interpolate() # Linear interpolation
17 # structures = neb.idpp_interpolate() # IDPP interpolation
18

19 # Save as structure file to dest path
20 write_neb_structures(
21 structures=structures, # Insert interpolated structure chains
22 coords_are_cartesian=True, # Whether to save in Cartesian coordinates
23 fmt="as", # Save format, supported formats: 'json', 'as', 'hzw', 'pdb', 'xyz', 'dump'
24 path="dspawpy_proj/dspawpy_tests/outputs/us/8neb_interpolate_structures", #␣

↪→Save path
25 prefix="structure", # File name prefix
26)
27

28 # Preview initial structure chain
29 write_json_chain(
30 preview=True, # whether to enable preview mode
31 directory="dspawpy_proj/dspawpy_tests/outputs/us/8neb_interpolate_structures",

↪→# Directory for NEB calculations
32 step=-1, # Default to saving the structure chain of the last ion step (latest)

(continues on next page)

224 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

33 dst="dspawpy_proj/dspawpy_tests/outputs/us/8neb", # Save path
34)
35 # write_xyz_chain(preview=True, # Whether to run in preview mode
36 # directory="dspawpy_proj/dspawpy_tests/outputs/us/8neb_

↪→interpolate_structures", # NEB calculation directory
37 # step=-1, # Default to saving the structure chain of the last␣

↪→ionic step (latest)
38 # dst='dspawpy_proj/dspawpy_tests/outputs/us/8neb' # save path
39 #)

Note

1. Users can modify the number of interpolated points as needed. Setting it to 8 will generate a folder containing
8 structure files, with 6 intermediate configurations.

2. neb.linear_interpolate is a linear interpolation method. The pbc parameter, when set to True, will
lock the search for the shortest diffusion path. It defaults to False to increase user control, because

3. For example, if the initial fractional coordinate of an atom is 0.2 and the final state is 0.8. When pbc = True,
the diffusion path will be forced to be 0.2 -> -0.2. When pbc = False, the user can make the program perform
interpolation along the diffusion path 0.2 -> 0.8; if the shortest path is desired, manually change 0.8 to -0.2,
thereby ensuring the program completes the initial guess of interpolation according to the users intent.

8.8.2 Plotting the energy barrier diagram
8.8.2.1 neb.iniFin = true/false

When neb.iniFin = true/false, you can use the path from the NEB calculation for barrier analysis (ensure that the
initial and final state calculation files are in the NEB calculation path):

• Refer to 8neb_barrier_CubicSpline.py:

1 # coding:utf-8
2 from dspawpy.diffusion.nebtools import plot_barrier
3

4 directory_of_neb_task = (
5 "dspawpy_proj/dspawpy_tests/inputs/2.15" # <-- Please modify to the actual NEB␣

↪→path
6)
7

8 # Plotting the energy barrier using CubicSpline interpolation
9 plot_barrier(

10 directory=directory_of_neb_task, # path of the neb task
11 method="CubicSpline", # Cubic spline interpolation
12 figname="dspawpy_proj/dspawpy_tests/outputs/us/8neb_barrier_CubicSpline.png",

↪→# Output filename for the energy barrier plot
13 show=False, # Whether to display the energy barrier plot
14)

Note

After running the above script, you can obtain a barrier curve similar to the following, with cubic spline

8.8. neb data processing 225

DS-PAW Manual

interpolation:

For this specific example, the curve will exhibit an undesirable dip after cubic spline interpolation, which is
inherent to the characteristics of the cubic spline interpolation algorithm.

dspawpy internally calls scipys interpolation algorithms. Taking the cubic spline interpolation algorithm as
an example in the script above, it is defined in the scipy documentation as:
class scipy.interpolate.CubicSpline(x, y, axis=0, bc_type='not-a-knot',␣
↪→extrapolate=None)

The keyword arguments include axis, bc_type, and extrapolate, whose specific meanings can be found in
scipy.interpolate.CubicSpline. We can specify the corresponding keyword arguments (axis, bc_type, extrapolate)
in the plot_barrier function and pass them to the scipy.interpolate.CubicSpline class for processing.

Here we use the script 8neb_barrier.py to compare the curves plotted by interpolating with three algo-
rithms:

1 # coding:utf-8
2 import os
3

4 import matplotlib.pyplot as plt
5

6 from dspawpy.diffusion.nebtools import plot_barrier
7

8 # Compare the differences in energy barrier curves drawn by different interpolation␣

226 8. Auxiliary Tool User Guide

https://docs.scipy.org/doc/scipy/tutorial/interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html#scipy.interpolate.CubicSpline

DS-PAW Manual

↪→methods, where show should be set to False
9 # 1. interp1d

10 plot_barrier(
11 directory="dspawpy_proj/dspawpy_tests/inputs/2.15", # path for NEB calculation
12 ri=None, # Reaction coordinate between the initial structure and the second␣

↪→structure, required when the NEB task only calculated intermediate structures
13 rf=None, # Reaction coordinate between the last configuration and the second-to-

↪→last configuration, when the NEB task only calculated intermediate configurations
14 ei=None, # Energy of the initial configuration, required when the NEB task only␣

↪→calculated intermediate configurations
15 ef=None, # Energy of the final configuration, required when the NEB task only␣

↪→calculated intermediate configurations
16 method="interp1d", # Interpolation method
17 figname=None, # Name of the output energy barrier plot file
18 show=False, # Whether to display the energy barrier plot
19 kind="quadratic", # Parameter of the interpolation method
20)
21 # 2. CubicSpline
22 plot_barrier(
23 directory="dspawpy_proj/dspawpy_tests/inputs/2.15",
24 method="CubicSpline",
25 figname=None,
26 show=False,
27)
28 # 3. pchip
29 plot_barrier(
30 directory="dspawpy_proj/dspawpy_tests/inputs/2.15",
31 method="pchip",
32 figname=None,
33 show=False,
34)
35

36 filename = "dspawpy_proj/dspawpy_tests/outputs/us/8neb_barrier_comparison.png" #␣
↪→Filename for the energy barrier plot output

37 os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
38 plt.savefig(filename, dpi=300)
39 # plt.show()

8.8. neb data processing 227

DS-PAW Manual

Note

1. Choosing the appropriate interpolation algorithm is crucial for optimizing the final curve presentation.

2. In most cases, selecting the pchip (piecewise cubic Hermite interpolating polynomial) monotonic cubic spline
interpolation algorithm will achieve good results, and it is also the default interpolation algorithm called.

8.8.2.2 neb.iniFin = true

When neb.iniFin = true is set, reading the neb.h5/neb.json files generated by the NEB calculation allows for a
quick barrier analysis:

• See 8neb_barrier_CubicSpline.py:

1 # coding:utf-8
2 from dspawpy.diffusion.nebtools import plot_barrier
3

4 # Plot energy barrier using CubicSpline interpolation
5 plot_barrier(
6 datafile="dspawpy_proj/dspawpy_tests/inputs/2.15/neb.h5", # Path to neb.h5
7 method="CubicSpline", # Cubic spline interpolation
8 figname="dspawpy_proj/dspawpy_tests/outputs/us/8neb_barrier_.png", # Output␣

↪→file name for the energy barrier plot
(continues on next page)

228 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

9 show=False, # Whether to display the energy barrier plot
10)

Processing the resulting barrier diagram is consistent with the previously read path.

Note

1. The energy stored in neb.h5 and neb.json files is TotalEnergy. If you need an accurate barrier value, it is
recommended to process it by reading the NEB calculation path (taking TotalEnergy0).

Warning

If you are connecting to a remote server via SSH to execute the script above and encounter QT-related error
messages, its possible that the program you are using (e.g., MobaXterm) is incompatible with the QT libraries.
Either switch to a different program (such as VSCode or the systems built-in terminal command line), or add the
following code starting on the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.8.3 Processing Data for Transition State Calculations
After NEB calculations, it is generally necessary to plot the energy barrier diagram and check the forces on each

interpolated structure to ensure they are below a specified threshold. If the results are abnormal, the force and energy
changes of each interpolated structure during the structure optimization process should also be checked to determine
if they have truly converged. These operations require at least three cycles. To simplify the process, we provide an
all-in-one summary function summary:

• Refer to 8neb_check_results.py:

1 # coding:utf-8
2 from dspawpy.diffusion.nebtools import summary
3

4 # Import the neb calculation directory, a complete folder after neb calculation␣
↪→needs to be provided

5 summary(
6 directory="dspawpy_proj/dspawpy_tests/inputs/2.15",
7 show_converge=False, # Whether to display the convergence plots of energy and␣

↪→force
8 outdir="dspawpy_proj/dspawpy_tests/outputs/us/8neb", # Path to save␣

↪→convergence plots of energy and forces
9 figname="dspawpy_proj/dspawpy_tests/outputs/us/8neb/neb_barrier_summary.png",

↪→# Path to save the energy barrier plot
10)
11 # Additional keyword arguments can be set for plotting the barrier diagram, such as:
12 # summary(directory='dspawpy_proj/dspawpy_tests/inputs/2.15', method='CubicSpline') #␣

↪→Change to CubicSpline for spline interpolation

8.8. neb data processing 229

DS-PAW Manual

Note

1. This script will print the energies and forces of each structure in a table, plot the energy barrier, and
also plot the convergence of energy and forces for intermediate structures.

2. If neb.iniFin = false, the user must copy the results file of the self-consistent calculation, either
scf.h5 or system.json, to the corresponding initial and final state subfolders. Otherwise, the program
cannot read the energy and force information of the initial and final states and will exit with an error.

3. By default, the energy barrier plot is stored in the parent directory of the NEB calculation, and the en-
ergy and force convergence plots for each intermediate structure are stored in the respective subfolders.

Executing the code will generate a table similar to the following, displaying the energy and force information for
each NEB configuration:

Image Force (eV/Å) Reaction coordinate (Å) Energy (eV) Delta energy (eV)
00 0.1803 0.0000 -39637.0984 0.0000
01 0.0263 0.5428 -39637.0186 0.0798
02 0.0248 1.0868 -39636.8801 0.2183
03 0.2344 1.5884 -39636.9984 0.1000
04 0.0141 2.0892 -39637.0900 0.0084

In addition to the energy barrier diagram, you can also obtain the energy and force convergence curves for each
intermediate configuration (taking configuration 02 as an example).

230 8. Auxiliary Tool User Guide

DS-PAW Manual

Warning

If you execute the above script by connecting to a remote server via SSH and encounter QT-related error
messages, it might be due to incompatibility between the program you are using (such as MobaXterm) and the QT
library. Either switch to another program (such as VSCode or the systems built-in terminal command line), or add
the following code starting from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.8.4 Observing the NEB Chain
Here, the NEB chain refers to the geometric relationship between the interpolated structures (structure00.as, struc-

ture01.as,), rather than the changes of a single structure during the optimization process.

• NEB calculations are computationally expensive, and observing the NEB chain helps to judge the convergence
speed of the NEB calculation. Furthermore, after generating intermediate structures via interpolation, previewing
the NEB chain is often necessary. These needs can be met using the 8neb_visualize.py script:

1 # coding:utf-8
2 from dspawpy.diffusion.nebtools import write_json_chain, write_xyz_chain
3

(continues on next page)

8.8. neb data processing 231

DS-PAW Manual

(continued from previous page)

4 # Convert the configuration chain under the NEB calculation path to a JSON format file
5 write_json_chain(
6 preview=False, # If the NEB calculation is already completed, preview mode is not␣

↪→required
7 directory="dspawpy_proj/dspawpy_tests/inputs/2.15", # NEB calculation directory
8 step=-1, # Default to saving the configuration chain of the last ion step (latest)
9 dst="dspawpy_proj/dspawpy_tests/outputs/us/8neb", # Save path

10 ignorels=False, # Set to True to ignore latestStructureXX.as files
11)
12

13 # Convert the configuration chain in the NEB calculation path to xyz format files
14 write_xyz_chain(
15 preview=False, # If the NEB calculation is already completed, preview mode is not␣

↪→required
16 directory="dspawpy_proj/dspawpy_tests/inputs/2.15", # NEB calculation directory
17 step=-1, # Default to saving the configuration chain of the last ionic step (latest)
18 dst="dspawpy_proj/dspawpy_tests/outputs/us/8neb", # Save path
19 ignorels=False, # Set to True to ignore latestStructureXX.as files
20)

Note

1. After this script generates the neb_movie*.json files, you can view them by opening the json file via Device
Studio –> Simulator –> DS-PAW –> Analysis Plot.

2. The directory parameter specifies the main path of the NEB calculation; the complete folder after the NEB
calculation is finished must be provided.

3. This script supports processing ongoing (i.e., incomplete) NEB calculation files, allowing users to monitor
the trajectory in real time.

4. The xyz file can be opened and viewed using OVITO software: Open the visualization interface via Device
Studio –> Simulator –> OVITO, and then drag and drop the xyz file.

5. Structure information reading priority: latestStructureXX.as > h5 > json; When ignorels is set to True, it first
attempts to read data from h5, and if it fails, it reads from json.

8.8.5 Calculate the inter-configuration distance
• Refer to this script: 8calc_dist.py:

1 # coding:utf-8
2 from dspawpy.diffusion.nebtools import get_distance
3 from dspawpy.io.structure import read
4

5 # Please modify the paths of structure01.as and structure02.as structure files␣
↪→according to the actual situation

6 # First read the fractional coordinates, element list, and cell information of the␣
↪→two configurations

7 s1 = read("dspawpy_proj/dspawpy_tests/inputs/2.15/01/structure01.as")[0]
8 s2 = read("dspawpy_proj/dspawpy_tests/inputs/2.15/02/structure02.as")[0]
9 # Calculate the distance between the two configurations, note that this function␣

↪→only accepts fractional coordinates
(continues on next page)

232 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

10 dist = get_distance(
11 spo1=s1.frac_coords,
12 spo2=s2.frac_coords,
13 lat1=s1.lattice.matrix,
14 lat2=s2.lattice.matrix,
15)
16 print("The distance between the two configurations is:", dist, "Angstrom")

8.8.6 Continued calculation with neb
• To restart a NEB calculation, refer to 8neb_restart.py:

1 # coding:utf-8
2 import os
3 from shutil import copytree, rmtree
4

5 from dspawpy.diffusion.nebtools import restart
6

7 if os.path.isdir("dspawpy_proj/dspawpy_tests/outputs/us/neb4bk"):
8 rmtree("dspawpy_proj/dspawpy_tests/outputs/us/neb4bk")
9

10 copytree(
11 "dspawpy_proj/dspawpy_tests/inputs/2.15",
12 "dspawpy_proj/dspawpy_tests/outputs/us/neb4bk",
13)
14 restart(
15 directory="dspawpy_proj/dspawpy_tests/outputs/us/neb4bk", # NEB task path
16 output="dspawpy_proj/dspawpy_tests/outputs/us/8neb_restart", # Backup␣

↪→destination
17)

See Continued calculation with neb for details.

8.8.7 Energy and maximum atomic force variation trend during NEB calculation
• To view plots showing the energy and maximum atomic force trends during the NEB calculation, refer to
8neb_energy_force_curves.py:

1 # coding:utf-8
2 from dspawpy.diffusion.nebtools import monitor_force_energy
3

4 # Specify the path to the NEB calculation folder; after running, Energies.png and␣
↪→MaxForce.png images will be generated in the specified directory

5 unfinished_neb_folder = "dspawpy_proj/dspawpy_tests/inputs/supplement/neb_unfinished
↪→"

6 monitor_force_energy(
7 directory=unfinished_neb_folder,
8 outdir="imgs", # Output image path
9)

Generates energy and force change trend charts:

8.8. neb data processing 233

DS-PAW Manual

234 8. Auxiliary Tool User Guide

DS-PAW Manual

API: write_neb_structures(), plot_barrier(), summary(), get_distance(), write_movie_json(),
write_xyz(), restart()

• The write_neb_structures function is responsible for generating intermediate configurations:

dspawpy.diffusion.neb.write_neb_structures(structures: list, coords_are_cartesian: bool = True,
fmt: str = 'as', path: str = '.', prefix='structure')

Interpolate and generate intermediate configuration files

Parameters

– structures – Structure list

– coords_are_cartesian – Is the coordinate Cartesian

– fmt – Structure file type, default to as

– path – Save path

– prefix – Filename prefix, default to structure, which will generate files like structure00.as,
structure01.as,

Returns
Saves the configuration file

Return type
file

8.8. neb data processing 235

DS-PAW Manual

Examples

First, read the .as file to create a structure object

>>> from dspawpy.io.structure import read
>>> init_struct = read("dspawpy_proj/dspawpy_tests/inputs/2.15/00/structure00.as
↪→")[0]
>>> final_struct = read("dspawpy_proj/dspawpy_tests/inputs/2.15/04/structure04.
↪→as")[0]

Then, interpolate and generate intermediate structure files

>>> from dspawpy.diffusion.neb import NEB,write_neb_structures
>>> neb = NEB(init_struct,final_struct,8)
>>> structures = neb.linear_interpolate() # Linear interpolation

Interpolated structures can be saved to the neb folder.

>>> write_neb_structures(structures, path="dspawpy_proj/dspawpy_tests/outputs/
↪→doctest/11neb_interpolate_structures")
==> ...structure00.as...
==> ...structure01.as...
==> ...structure02.as...
==> ...structure03.as...
==> ...structure04.as...
==> ...structure05.as...
==> ...structure06.as...
==> ...structure07.as...

• The plot_barrier function is responsible for plotting the energy barrier diagram:

dspawpy.diffusion.nebtools.plot_barrier(datafile: str = 'neb.h5', directory: str | None = None, ri:
float | None = None, rf: float | None = None, ei: float |
None = None, ef: float | None = None, method: str =
'PchipInterpolator', figname: str | None =
'neb_barrier.png', show: bool = True, raw: bool = False,
verbose: bool = False, **kwargs)

Call the scipy.interpolate interpolation algorithm to fit the NEB barrier and plot

Parameters

– datafile – Path to neb.h5 or neb.json file

– directory – NEB calculation path

– ri – Initial reaction coordinate

– rf – Final state reaction coordinate

– ei – Initial state self-consistent energy

– ef – Final state self-consistent energy

– method (str, optional) – Interpolation algorithm, default PchipInterpolator

– figname (str, optional) – Barrier image name, default neb_barrier.png

– show (bool, optional) – Whether to display the interactive interface, default True

– raw (bool, optional) – Whether to return plotting data to CSV

236 8. Auxiliary Tool User Guide

DS-PAW Manual

Raises

– ImportError – The specified interpolation algorithm does not exist in scipy.interpolate

– ValueError – The parameters passed to the interpolation algorithm do not meet the re-
quirements of the algorithm

Examples

>>> from dspawpy.diffusion.nebtools import plot_barrier
>>> import matplotlib.pyplot as plt

Comparing different interpolation algorithms

>>> plot_barrier(directory='dspawpy_proj/dspawpy_tests/inputs/2.15', method=
↪→'interp1d', kind=2, figname=None, show=False)
>>> plot_barrier(directory='dspawpy_proj/dspawpy_tests/inputs/2.15', method=
↪→'interp1d', kind=3, figname=None, show=False)
>>> plot_barrier(directory='dspawpy_proj/dspawpy_tests/inputs/2.15', method=
↪→'CubicSpline', figname=None, show=False)
>>> plot_barrier(directory='dspawpy_proj/dspawpy_tests/inputs/2.15', method=
↪→'pchip', figname='dspawpy_proj/dspawpy_tests/outputs/doctest/barrier_
↪→comparison.png', show=False)
==> ...barrier_comparison.png...

Attempt to read neb.h5 file or neb.json file

>>> plot_barrier(datafile='dspawpy_proj/dspawpy_tests/inputs/2.15/neb.h5',␣
↪→method='pchip', figname='dspawpy_proj/dspawpy_tests/outputs/doctest/barrier_
↪→h5.png', show=False)
==> ...barrier_h5.png
>>> plot_barrier(datafile='dspawpy_proj/dspawpy_tests/inputs/2.15/neb.json',␣
↪→method='pchip', figname='dspawpy_proj/dspawpy_tests/outputs/doctest/barrier_
↪→json.png', show=False)
==> ...barrier_json.png...

• The summary function is responsible for summarizing the NEB calculation tasks documentation:

dspawpy.diffusion.nebtools.summary(directory: str = '.', raw=False, show_converge=False, outdir: str
| None = None, **kwargs)

Summary of NEB task completion, execute the following steps in order:

– 1. Print the forces, reaction coordinates, energy, and energy differences from the initial configuration
for each structure

– 2. Plot the energy barrier diagram

– 3. Plot and save the convergence processes of energy and forces during the structure optimization

Parameters

– directory – NEB path, default to the current path

– raw – Whether to save the plot data to a CSV file

– show_converge – Whether to display energy and force convergence plots of the structural
optimization process, default is not displayed

– outdir – Path to save the convergence process figure, default to directory

8.8. neb data processing 237

DS-PAW Manual

– **kwargs (dict) – Parameters passed to plot_barrier

Examples

>>> from dspawpy.diffusion.nebtools import summary
>>> directory = 'dspawpy_proj/dspawpy_tests/inputs/2.15' # Path for NEB␣
↪→calculation, default to current path
>>> summary(directory, show=False, figname='dspawpy_proj/dspawpy_tests/outputs/
↪→doctest/neb_barrier.png')
shape: (5, 5)

FolderName Force(eV/Å) RC(Å) Energy(eV) E-E0(eV)

00 0.180272 0.0 -39637.097656 0.0
01 0.014094 0.542789 -39637.019531 0.079814
02 0.026337 1.0868 -39636.878906 0.218265
03 0.024798 1.588367 -39637.0 0.100043
04 0.234429 2.089212 -39637.089844 0.008414

==> ...neb_barrier.png...
==> ...converge.png...
==> ...converge.png...
==> ...converge.png...

>>> summary(directory, show=False, figname='dspawpy_proj/dspawpy_tests/outputs/
↪→doctest/neb_barrier.png', outdir="dspawpy_proj/dspawpy_tests/outputs/doctest/
↪→neb_summary")
shape: (5, 5)

FolderName Force(eV/Å) RC(Å) Energy(eV) E-E0(eV)

00 0.180272 0.0 -39637.097656 0.0
01 0.014094 0.542789 -39637.019531 0.079814
02 0.026337 1.0868 -39636.878906 0.218265
03 0.024798 1.588367 -39637.0 0.100043
04 0.234429 2.089212 -39637.089844 0.008414

==> ...neb_barrier.png...
==> ...converge.png...
==> ...converge.png...
==> ...converge.png...

If inifin=False, the user must place a converged scf.h5 or system.json in the initial and final state subfolders.

• The get_distance function calculates the distance between two configurations:

dspawpy.diffusion.nebtools.get_distance(spo1, spo2, lat1, lat2)
Calculate the distance between two structures based on their fractional coordinates and cell parameters

Parameters

– spo1 (np.ndarray) – Scores coordinate list 1

– spo2 (np.ndarray) – Fractional coordinate list 2

– lat1 (np.ndarray) – Cell 1

238 8. Auxiliary Tool User Guide

DS-PAW Manual

– lat2 (np.ndarray) – Cell 2

Returns
Distance

Return type
float

Examples

First, read the structure information

>>> from dspawpy.io.structure import read
>>> s1 = read('dspawpy_proj/dspawpy_tests/inputs/2.15/01/structure01.as')[0]
>>> s2 = read('dspawpy_proj/dspawpy_tests/inputs/2.15/02/structure02.as')[0]

Calculate the distance between two configurations

>>> from dspawpy.diffusion.nebtools import get_distance
>>> dist = get_distance(s1.frac_coords, s2.frac_coords, s1.lattice.matrix, s2.
↪→lattice.matrix)
>>> print('The distance between the two configurations is:', dist, 'Angstrom')
The distance between the two configurations is: 0.476972808803491 Angstrom

• The functions write_movie_json and write_xyz can write intermediate configurations to JSON or XYZ files:

• The restart function is responsible for restarting the NEB calculation:

dspawpy.diffusion.nebtools.restart(directory: str = '.', output: str = 'bakfile')
Archive and compress old NEB tasks, and prepare for continuation at the original path

Parameters

– directory – Old NEB task path, default current path

– output – Backup folder path, default is to create a bakfile folder in the current path for
backup; Alternatively, you can specify any path, but it cannot be the same as the current
path

Examples

>>> from dspawpy.diffusion.nebtools import restart
>>> from shutil import copytree
>>> copytree('dspawpy_proj/dspawpy_tests/inputs/2.15', 'dspawpy_proj/dspawpy_
↪→tests/outputs/doctest/neb4bk2', dirs_exist_ok=True)
'dspawpy_proj/dspawpy_tests/outputs/doctest/neb4bk2'
>>> restart(directory='dspawpy_proj/dspawpy_tests/outputs/doctest/neb4bk2',␣
↪→output='dspawpy_proj/dspawpy_tests/outputs/doctest/neb_backup')
==> ...neb_backup...

The preparation for the continuation calculation may take a long time to complete, please be patient

• The monitor_force_energy function is responsible for plotting the energy and force changes during the NEB
calculation:

dspawpy.diffusion.nebtools.monitor_force_energy(directory: str, outdir: str = '.', relative: bool =
False)

Read forces and energies during NEB calculations from xx/DS-PAW.log and plot curves

8.8. neb data processing 239

DS-PAW Manual

No JSON files are output during the calculation, and only force information is present in nebXX.h5 files,
so DS-PAW.log must be read.

Energy matching mode, should hit -40521.972259

8.8.7.1 LOOP 1:

iter | Etot(eV) dE(eV) time # 1 | -35958.655378 -3.595866e+04 47.784 s # 2 | -40069.322436 -
4.110667e+03 15.146 s # 3 | -40490.281166 -4.209587e+02 15.114 s # 4 | -40521.972259 -3.169109e+01
17.936 s

Examples

>>> from dspawpy.diffusion.nebtools import monitor_force_energy
>>> monitor_force_energy(
... directory="dspawpy_proj/dspawpy_tests/inputs/supplement/neb_unfinished",
... outdir="imgs"
...)
Max Force shape: (57, 4)

Folder 01 Folder 02 Folder 03 Folder 04

23.775228 71.547767 72.641234 24.147289
22.683711 68.595607 69.704747 23.0549
5.624252 20.071221 20.049429 5.567894
5.354774 19.631643 19.599093 5.425462
3.188546 9.840143 9.748006 2.943709

0.293867 0.812679 0.920251 0.573649
0.27249 0.7475 0.921836 0.540239
0.299767 0.360673 1.174016 0.416171
0.249903 0.288985 1.169237 0.366117
0.204396 0.518356 0.913792 0.300884

Energies shape: (57, 4)

Folder 01 Folder 02 Folder 03 Folder 04

-40448.281556 -40436.419243 -40436.084611 -40447.527434
-40448.491374 -40437.026948 -40436.685178 -40447.73947
-40451.391617 -40446.884408 -40446.613158 -40450.686918
-40451.448662 -40447.079933 -40446.803281 -40450.743777
-40452.126865 -40450.274376 -40449.978142 -40451.405157

-40452.620987 -40452.538682 -40452.230568 -40452.056262
-40452.621777 -40452.544298 -40452.231776 -40452.055815
-40452.620701 -40452.565649 -40452.164604 -40452.035357
-40452.621371 -40452.569113 -40452.164784 -40452.037426
-40452.622418 -40452.577864 -40452.141919 -40452.037885

==> ...MaxForce.png...
==> ...Energies.png...

240 8. Auxiliary Tool User Guide

DS-PAW Manual

8.9 Phonon Data Processing
Using the example of a phonon band structure and density of states calculation for MgO, using phonon.h5:

If phonopy is not installed, running the following script will result in the message no module named
'phonopy', but this does not affect the programs normal operation.

8.9.1 Phonon band data processing
• Refer to 9phonon_bandplot.py:

1 # coding:utf-8
2 import os
3

4 from pymatgen.phonon.plotter import PhononBSPlotter
5

6 from dspawpy.io.read import get_phonon_band_data
7

8 band_data = get_phonon_band_data(
9 "dspawpy_proj/dspawpy_tests/inputs/2.16.1/phonon.h5",

10) # Read phonon band structure
11 bsp = PhononBSPlotter(band_data)
12 axes_or_plt = bsp.get_plot(ylim=None, units="thz") # Y-axis range # Units
13 import matplotlib.pyplot as plt # noqa: E402
14

15 if isinstance(axes_or_plt, plt.Axes):
16 fig = axes_or_plt.get_figure() # version newer than v2023.8.10
17 elif isinstance(axes_or_plt, tuple):
18 fig = axes_or_plt[0].get_figure()
19 else:
20 fig = axes_or_plt.gcf() # older version pymatgen
21

22 filename = "dspawpy_proj/dspawpy_tests/outputs/us/9phonon_bandplot.png" # File name for␣
↪→the output phonon band plot

23 os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
24 fig.savefig(filename, dpi=300)

Executing the code yields a phonon band structure curve similar to the following:

8.9. Phonon Data Processing 241

DS-PAW Manual

Warning

If you encounter QT-related error messages when executing the above script via SSH connection to a remote
server, its likely due to incompatibility between the program used (e.g., MobaXterm) and the QT library. Either
change the program (e.g., VSCode or the systems built-in terminal command line), or add the following code to
your Python script starting from the second line:

import matplotlib
matplotlib.use('agg')

8.9.2 Phonon Density of States Data Processing
• Refer to 9phonon_dosplot.py:

1 # coding:utf-8
2 import os
3

4 from pymatgen.phonon.plotter import PhononDosPlotter
5

6 from dspawpy.io.read import get_phonon_dos_data
7

8 dos = get_phonon_dos_data("dspawpy_proj/dspawpy_tests/inputs/2.16.1/phonon.h5")
9 dp = PhononDosPlotter(

10 stack=False, # True indicates drawing an area plot
(continues on next page)

242 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

11 sigma=None, # Gaussian blur parameter
12)
13 dp.add_dos(
14 label="Phonon", dos=dos
15) # Legend # The phonon density of states to be plotted
16 axes_or_plt = dp.get_plot(
17 xlim=[0, 20], # x-axis range
18 ylim=None, # y-axis range
19 units="THz", # Unit
20)
21 import matplotlib.pyplot as plt # noqa: E402
22

23 if isinstance(axes_or_plt, plt.Axes):
24 fig = axes_or_plt.get_figure() # version newer than v2023.8.10
25 elif isinstance(axes_or_plt, tuple):
26 fig = axes_or_plt[0].get_figure()
27 else:
28 fig = axes_or_plt.gcf() # older version pymatgen
29

30 filename = " dspawpy_proj/dspawpy_tests/outputs/us/9phonon_dosplot.png" # Energy␣
↪→barrier plot output filename

31 os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
32 fig.savefig(filename, dpi=300)

Executing the code yields a phonon density of states curve similar to the following:

Warning

8.9. Phonon Data Processing 243

DS-PAW Manual

If you execute the script above by SSH connection to a remote server and encounter QT-related error messages,
its possible that the program you are using (such as MobaXterm) is incompatible with the QT library. Either change
the program (e.g., VSCode or the systems built-in terminal command line), or add the following code starting from
the second line of your Python script:
import matplotlib
matplotlib.use('agg')

8.9.3 Phonon Thermodynamic Data Processing
Refer to 9phonon_thermal.py:

1 # coding:utf-8
2 from dspawpy.plot import plot_phonon_thermal
3

4 plot_phonon_thermal(
5 datafile="dspawpy_proj/dspawpy_tests/inputs/2.26/phonon.h5", # phonon.h5 data file␣

↪→path
6 figname="dspawpy_proj/dspawpy_tests/outputs/us/9phonon.png", # Output phonon␣

↪→thermodynamics figure filename
7 show=False, # Whether to display the image
8)

Executing the code yields phonon thermodynamic curves similar to the following:

244 8. Auxiliary Tool User Guide

DS-PAW Manual

API: get_phonon_band_data(), get_phonon_dos_data(), plot_phonon_thermal()

• The get_phonon_band_data function is responsible for reading phonon band data:

dspawpy.io.read.get_phonon_band_data(phonon_band_dir: str, verbose: bool = False)
Reads phonon band data from an h5 or json file and constructs a PhononBandStructureSymmLine object

Parameters
phonon_band_dir – Path to the band structure file, phonon.h5 / phonon.json, or a folder
containing these files

Return type
PhononBandStructureSymmLine

Examples

>>> from dspawpy.io.read import get_phonon_band_data
>>> band_data = get_phonon_band_data("dspawpy_proj/dspawpy_tests/inputs/2.16/
↪→phonon.h5") # Read phonon band data
>>> band_data = get_phonon_band_data("dspawpy_proj/dspawpy_tests/inputs/2.16/
↪→phonon.json") # Read phonon band data

• The get_phonon_dos_data function is responsible for reading the phonon density of states:

8.9. Phonon Data Processing 245

DS-PAW Manual

dspawpy.io.read.get_phonon_dos_data(phonon_dos_dir: str, verbose: bool = False)
Reads phonon density of states data from an h5 or json file, constructs a PhononDos object

Parameters
phonon_dos_dir – Path to the phonon DOS file, phonon_dos.h5 / phonon_dos.json, or a
folder containing these files

Return type
PhononDos

Examples

>>> from dspawpy.io.read import get_phonon_dos_data
>>> phdos = get_phonon_dos_data(phonon_dos_dir='dspawpy_proj/dspawpy_tests/
↪→inputs/2.16.1/phonon.json')
>>> phdos = get_phonon_dos_data(phonon_dos_dir='dspawpy_proj/dspawpy_tests/
↪→inputs/2.16.1/phonon.h5')
>>> phdos.frequencies
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ,

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3. , 3.1, 3.2,
3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4. , 4.1, 4.2, 4.3,
4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. , 5.1, 5.2, 5.3, 5.4,
5.5, 5.6, 5.7, 5.8, 5.9, 6. , 6.1, 6.2, 6.3, 6.4, 6.5,
6.6, 6.7, 6.8, 6.9, 7. , 7.1, 7.2, 7.3, 7.4, 7.5, 7.6,
7.7, 7.8, 7.9, 8. , 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7,
8.8, 8.9, 9. , 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8,
9.9, 10. , 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9,
11. , 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12. ,
12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13. , 13.1,
13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14. , 14.1, 14.2,
14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9, 15. , 15.1, 15.2, 15.3,
15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 16. , 16.1, 16.2, 16.3, 16.4,
16.5, 16.6, 16.7, 16.8, 16.9, 17. , 17.1, 17.2, 17.3, 17.4, 17.5,
17.6, 17.7, 17.8, 17.9, 18. , 18.1, 18.2, 18.3, 18.4, 18.5, 18.6,
18.7, 18.8, 18.9, 19. , 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7,
19.8, 19.9, 20.])

• The plot_phonon_thermal function is responsible for plotting phonon thermodynamic properties:

dspawpy.plot.plot_phonon_thermal(datafile: str = 'phonon.h5', figname: str = 'phonon.png', show:
bool = True, raw: bool = False, verbose: bool = False)

Task completed for phonon thermodynamic calculations, plot curves of relevant physical quantities versus
temperature

phonon.h5/phonon.json -> phonon.png

Parameters

– datafile – Path to an h5 or json file or a folder containing any of these files, default
phonon.h5

– figname – Filename to save the image

– show – Whether to pop up an interactive interface

– raw – Whether to save the plotting data to rawphonon.csv file

246 8. Auxiliary Tool User Guide

DS-PAW Manual

Returns
Image path, default phonon.png

Return type
figname

Examples

>>> from dspawpy.plot import plot_phonon_thermal
>>> plot_phonon_thermal('dspawpy_proj/dspawpy_tests/inputs/2.26/phonon.h5',␣
↪→figname='dspawpy_proj/dspawpy_tests/outputs/doctest/phonon_thermal_h5.png',␣
↪→show=False)
>>> plot_phonon_thermal('dspawpy_proj/dspawpy_tests/inputs/2.26/phonon.json',␣
↪→figname='dspawpy_proj/dspawpy_tests/outputs/doctest/phonon_thermal_json.png',␣
↪→show=False, raw=True)

Warning

If you execute the above script by connecting to a remote server via SSH and encounter QT-related error
messages, its likely that the program you are using (e.g., MobaXterm) is incompatible with the QT libraries. You
can either switch programs (e.g., VSCode or the systems built-in terminal) or add the following code starting from
the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.10 aimd molecular dynamics simulation data processing
For a quick start, take the molecular dynamics simulation data of the H2O molecular system, for example, the

aimd.h5 file:

8.10.1 Convert the trajectory file format to .xyz or .dump.
Read data from the HDF5 file output by AIMD and generate trajectory files.

The generated .xyz or .dump files can be dragged and dropped into OVITO for visualization. You can open the
OVITO visualization interface through Device Studio –> Simulator –> OVITO, and then drag and drop the .xyz or
.dump files into OVITO.

See 10write_aimd_traj.py:

1 # coding:utf-8
2 from dspawpy.io.structure import convert
3

4 convert(
5 infile="dspawpy_proj/dspawpy_tests/inputs/2.18/aimd.h5", # Structure to be␣

↪→converted, if in the current path, only the filename can be written
6 si=None, # Filter the configuration number, if not specified, read all by default
7 ele=None, # Filter element symbol, default reads atomic information for all elements
8 ai=None, # Filter atomic indices (starting from 1), default to read all atomic␣

↪→information
9 outfile="dspawpy_proj/dspawpy_tests/outputs/us/10aimdTraj.xyz", # Can also generate␣

(continues on next page)

8.10. aimd molecular dynamics simulation data processing 247

DS-PAW Manual

(continued from previous page)

↪→.dump files (lower precision), currently only supports orthogonal unit cells
10)

Executing the code will generate trajectory files in .xyz and .dump formats, which can be opened with OVITO.
For more details on structure file conversion, refer to structure structure conversion

Note

OVITO and dspawpy do not support saving systems with non-orthogonal unit cells as dump files.

8.10.2 Changes in energy, temperature, etc. curves during the dynamics process.
• Refer to 10check_aimd_conv.py:

1 # coding:utf-8
2 from dspawpy.plot import plot_aimd
3

4 plot_aimd(
5 datafile="dspawpy_proj/dspawpy_tests/inputs/2.18/aimd.h5", # Data file path
6 show=False, # Whether to pop up the image window
7 figname="dspawpy_proj/dspawpy_tests/outputs/us/10aimd.png", # Output image␣

↪→file name
8 flags_str="1 2 3 4 5", # Select data types
9)

10 # The meaning of flags_str is as follows
11 # 1. Kinetic energy
12 # 2. Total Energy
13 # 3. Pressure
14 # 4. Temperature
15 # 5. Volume

Executing the code will generate the following combined graph:

248 8. Auxiliary Tool User Guide

DS-PAW Manual

Warning

If you execute the above script by SSH connection to a remote server and encounter QT-related error messages,
its possible that the program you are using (such as MobaXterm) is incompatible with the QT libraries. You can
either switch programs (for example, VSCode or the systems built-in terminal command line), or add the following
code starting from the second line of the Python script:

8.10. aimd molecular dynamics simulation data processing 249

DS-PAW Manual

import matplotlib
matplotlib.use('agg')

8.10.3 Mean Squared Displacement (MSD) Analysis
• See 10aimd_msd.py:

1 # coding:utf-8
2 from dspawpy.analysis.aimdtools import get_lagtime_msd, plot_msd
3

4 # If AIMD is not completed in one go, you can assign multiple h5 file paths to the␣
↪→datafile parameter in a list form

5 lagtime, msd = get_lagtime_msd(
6 datafile="dspawpy_proj/dspawpy_tests/inputs/2.18/aimd.h5", # Data file path
7 select="all", # Default selects all atoms
8 msd_type="xyz", # Default to calculate MSD in the xyz directions
9 timestep=None, # Default reads the timestep from the datafile

10)
11 # Plot the graph using the obtained data and save it
12 plot_msd(
13 lagtime, # X-axis coordinate
14 msd, # vertical axis
15 xlim=None, # Set the display range of the x-axis
16 ylim=None, # Set the display range of the y-axis
17 figname="dspawpy_proj/dspawpy_tests/outputs/us/10MSD.png", # Output image␣

↪→filename
18 show=False, # Whether to pop up the image window
19 ax=None, # Optional subplot specification
20)

Executing the code will generate an image similar to the following:

250 8. Auxiliary Tool User Guide

DS-PAW Manual

Warning

If you execute the above script by SSH connection to a remote server and encounter QT-related error messages,
it might be due to incompatibility between the program youre using (like MobaXterm, etc.) and the QT libraries.
Either switch to a different program (such as VSCode or the systems built-in terminal), or add the following code
starting from the second line of the Python script:

import matplotlib
matplotlib.use('agg')

8.10.4 Root Mean Square Deviation (RMSD) Analysis
• See 10aimd_rmsd.py:

1 # coding:utf-8
2 from dspawpy.analysis.aimdtools import get_lagtime_rmsd, plot_rmsd
3

4 # If AIMD is not completed in a single run, you can assign multiple paths of h5␣
↪→files in list form to the datafile parameter

5 lagtime, rmsd = get_lagtime_rmsd(
6 datafile="dspawpy_proj/dspawpy_tests/inputs/2.18/aimd.h5",

(continues on next page)

8.10. aimd molecular dynamics simulation data processing 251

DS-PAW Manual

(continued from previous page)

7 timestep=None, # Data file path # Default reads the time step from the␣
↪→datafile

8)
9 plot_rmsd(

10 lagtime, # Horizontal coordinate
11 rmsd, # vertical coordinate
12 xlim=None, # Set the display range of the x-axis
13 ylim=None, # Set the display range of the y-axis
14 figname="dspawpy_proj/dspawpy_tests/outputs/us/10RMSD.png", # Output image␣

↪→filename
15 show=False, # Whether to pop up the image window
16 ax=None, # Optional subplot specification
17)

Executing the code will generate an image similar to the following:

Warning

If you execute the above script by connecting to a remote server via SSH, and QT-related error messages
appear, it may be due to incompatibility between the program used (e.g., MobaXterm) and the QT libraries. Either

252 8. Auxiliary Tool User Guide

DS-PAW Manual

change the program (such as VSCode or the systems built-in terminal command line), or add the following code
starting from the second line of your Python script:
import matplotlib
matplotlib.use('agg')

8.10.5 Analysis of Atomic Pair Distribution Functions or Radial Distribution Func-
tions (RDFs)

• See 10aimd_rdf.py :

1 # coding:utf-8
2 from dspawpy.analysis.aimdtools import get_rs_rdfs, plot_rdf
3

4 # If AIMD is not completed in one go, you can assign multiple h5 file paths to the␣
↪→datafile parameter in the form of a list.

5 rs, rdfs = get_rs_rdfs(
6 datafile="dspawpy_proj/dspawpy_tests/inputs/2.18/aimd.h5", # Data file path
7 ele1="H", # Central element
8 ele2="O", # Target element
9 rmin=0.0, # Minimum radius

10 rmax=10.0, # Maximum radius
11 ngrid=1000, # Number of grid points
12 sigma=0.1, # sigma value
13)
14 plot_rdf(
15 rs, # x-axis values
16 rdfs, # Vertical coordinate
17 "H", # Central element
18 "O", # Object element
19 figname="dspawpy_proj/dspawpy_tests/outputs/us/10RDF.png", # Image save path
20 show=False, # Whether to pop up the image window
21 ax=None, # Subplot can be specified
22)

Executing the code will generate an image similar to the following:

8.10. aimd molecular dynamics simulation data processing 253

DS-PAW Manual

• The statistical calculations involved in this section are complex; please refer to the function API for more details.

API: plot_aimd(), get_lagtime_msd(), plot_msd(), get_rs_rdfs(), plot_rdf(), get_lagtime_rmsd(),
plot_rmsd()

• The plot_aimd function can be used to help check the convergence of key physical quantities during AIMD
calculations:

dspawpy.plot.plot_aimd(datafile: str = 'aimd.h5', show: bool = True, figname: str = 'aimd.png',
flags_str: str = '12345', raw: bool = False)

Plot the convergence process of key physical quantities after the AIMD task completion

aimd.h5 -> aimd.png

Parameters

– datafile – Location of the h5 file. For example, aimd.h5 or [aimd.h5, aimd2.h5]

– show – Whether to display the interactive interface. Default is False

– figname – Path to the saved image. Default aimd.h5

– flags_str – Subplot number. 1. Kinetic Energy 2. Total Energy 3. Pressure 4. Temper-
ature 5. Volume

– raw – Whether to output plot data to a CSV file

254 8. Auxiliary Tool User Guide

DS-PAW Manual

Returns
Image path, default aimd.png

Return type
figname

Examples

>>> from dspawpy.plot import plot_aimd

Read the contents of the aimd.h5 file, plot the convergence process graphs of kinetic energy, total energy,
temperature, and volume, and save the corresponding data to rawaimd_*.csv.

>>> plot_aimd(datafile='dspawpy_proj/dspawpy_tests/inputs/2.18/aimd.h5', flags_
↪→str='1 2 3 4 5', raw=True, show=False, figname="dspawpy_proj/dspawpy_tests/
↪→outputs/doctest/aimdconv.png")
>>> plot_aimd(datafile='dspawpy_proj/dspawpy_tests/inputs/2.18/aimd.json',␣
↪→flags_str='1 2 3 4 5', show=False, figname="dspawpy_proj/dspawpy_tests/
↪→outputs/doctest/aimdconv_json.png")

• The get_* and plot_* functions are responsible for reading key physical quantities from the AIMD calculation
process:

dspawpy.analysis.aimdtools.get_lagtime_msd(datafile: str | List[str], select: str | List[int] = 'all',
msd_type: str = 'xyz', timestep: float | None = None)

Calculate the mean squared displacement at different time steps

Parameters

– datafile –

∗ Path to aimd.h5 or aimd.json files, or a directory containing these files (prioritizes search-
ing for aimd.h5)

∗ Written as a list, the data will be read sequentially and merged together

∗ For example [aimd1.h5, aimd2.h5, /data/home/my_aimd_task]

– select – Select atomic number or element; atomic numbers start from 0; default is all,
which calculates all atoms

– msd_type – Calculate the type of MSD, options: xyz, xy, xz, yz, x, y, z, default is xyz,
which calculates all components

– timestep – Time interval between adjacent structures, in units of fs, default None, will
be read from datafile, if failed, set to 1.0fs; If not None, this value will be used to calculate
the time series

Returns

– lagtime (np.ndarray) – Time series

– result (np.ndarray) – Mean square displacement sequence

Examples

>>> from dspawpy.analysis.aimdtools import get_lagtime_msd
>>> lagtime, msd = get_lagtime_msd(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→2.18/aimd.json', timestep=0.1)
Calculating MSD...

(continues on next page)

8.10. aimd molecular dynamics simulation data processing 255

DS-PAW Manual

(continued from previous page)

>>> lagtime, msd = get_lagtime_msd(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→2.18/aimd.h5')
Calculating MSD...
>>> lagtime
array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.997e+03, 1.998e+03,

1.999e+03])
>>> msd
array([0.00000000e+00, 3.75844096e-03, 1.45298732e-02, ...,

7.98518472e+02, 7.99267490e+02, 7.99992702e+02])
>>> lagtime, msd = get_lagtime_msd(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→2.18/aimd.h5', select='H')
Calculating MSD...
>>> lagtime, msd = get_lagtime_msd(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→2.18/aimd.json', select=[0,1])
Calculating MSD...
>>> lagtime, msd = get_lagtime_msd(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→2.18/aimd.h5', select=['H','O'])
Calculating MSD...
>>> lagtime, msd = get_lagtime_msd(datafile='dspawpy_proj/dspawpy_tests/inputs/
↪→2.18/aimd.json', select=0)
Calculating MSD...

dspawpy.analysis.aimdtools.get_lagtime_rmsd(datafile: str | List[str], timestep: float | None =
None)

Parameters

– datafile –

∗ Path to aimd.h5 or aimd.json files, or a directory containing these files (prioritizes search-
ing for aimd.h5).

∗ Written as a list, the data will be read sequentially and merged together

∗ For example [aimd1.h5, aimd2.h5, /data/home/my_aimd_task]

– timestep – Time interval between adjacent structures, in fs, default None, will be read
from datafile, set to 1.0fs if failed; If not None, it will be used to calculate the time series

Returns

– lagtime (numpy.ndarray) – Time series

– rmsd (numpy.ndarray) – Root mean square deviation sequence

Examples

>>> from dspawpy.analysis.aimdtools import get_lagtime_rmsd
>>> lagtime, rmsd = get_lagtime_rmsd(datafile='dspawpy_proj/dspawpy_tests/
↪→inputs/2.18/aimd.json')
Calculating RMSD...
>>> lagtime, rmsd = get_lagtime_rmsd(datafile='dspawpy_proj/dspawpy_tests/
↪→inputs/2.18/aimd.h5', timestep=0.1)
Calculating RMSD...
>>> lagtime
array([0.000e+00, 1.000e-01, 2.000e-01, ..., 1.997e+02, 1.998e+02,

(continues on next page)

256 8. Auxiliary Tool User Guide

DS-PAW Manual

(continued from previous page)

1.999e+02])
>>> rmsd
array([0. , 0.05321816, 0.09771622, ..., 28.27847679,

28.28130893, 28.28414224])

dspawpy.analysis.aimdtools.get_rs_rdfs(datafile: str | List[str], ele1: str, ele2: str, rmin: float = 0,
rmax: float = 10, ngrid: int = 101, sigma: float = 0)

Compute the radial distribution function (RDF).

Parameters

– datafile –

∗ Path to aimd.h5 or aimd.json files, or a directory containing these files (prioritizes search-
ing for aimd.h5)

∗ Written as a list, the data will be read sequentially and merged together

∗ For example [aimd1.h5, aimd2.h5, /data/home/my_aimd_task]

– ele1 – Central element

– ele2 – Adjacent elements

– rmin – Radial distribution minimum value, default is 0

– rmax – Radial distribution maximum value, default is 10

– ngrid – Number of grid points in the radial distribution, default is 101

– sigma – Smoothing parameter

Returns

– r (numpy.ndarray) – Grid points for the radial distribution

– rdf (numpy.ndarray) – Radial distribution function

Examples

>>> from dspawpy.analysis.aimdtools import get_rs_rdfs
>>> rs, rdfs = get_rs_rdfs(datafile='dspawpy_proj/dspawpy_tests/inputs/2.18/
↪→aimd.h5',ele1='H',ele2='O', sigma=1e-6)
Calculating RDF...
>>> rs, rdfs = get_rs_rdfs(datafile='dspawpy_proj/dspawpy_tests/inputs/2.18/
↪→aimd.h5',ele1='H',ele2='O')
Calculating RDF...
>>> rdfs
array([0. , 0. , 0. , 0. , 0. ,

0. , 0. , 0. , 0. , 0.00646866,
0.01098199, 0.0004777 , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,

(continues on next page)

8.10. aimd molecular dynamics simulation data processing 257

DS-PAW Manual

(continued from previous page)

0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.])

dspawpy.analysis.aimdtools.plot_msd(lagtime, result, xlim: Sequence | None = None, ylim: Sequence
| None = None, figname: str | None = None, show: bool = True,
ax=None, **kwargs)

Compute mean squared displacement (MSD) after the AIMD task is completed

Parameters

– lagtime (np.ndarray) – Time series

– result (np.ndarray) – Mean squared displacement sequence

– xlim – x-axis range, default None, set automatically

– ylim – y-axis range, default to None, automatically set

– figname – Image name, default to None, do not save the image

– show – Whether to display the image, default is True

– ax – Used to draw the image on a subplot in matplotlib

– **kwargs (dict) – Other parameters, such as line width, color, etc., are passed to plt.plot
function

Return type
Image after MSD analysis

Examples

>>> from dspawpy.analysis.aimdtools import get_lagtime_msd, plot_msd

Specify the location of the h5 file, use the get_lagtime_msd function to obtain data, and the select parameter
selects the nth atom (not by element)

>>> lagtime, msd = get_lagtime_msd('dspawpy_proj/dspawpy_tests/inputs/2.18/aimd.
↪→h5', select=[0])
Calculating MSD...

Plot the data and save the figure

>>> plot_msd(lagtime, msd, xlim=[0,800], ylim=[0,1000], figname='dspawpy_proj/
↪→dspawpy_tests/outputs/doctest/MSD.png', show=False)
==> ...MSD.png
...

258 8. Auxiliary Tool User Guide

DS-PAW Manual

dspawpy.analysis.aimdtools.plot_rdf(rs, rdfs, ele1: str, ele2: str, xlim: Sequence | None = None,
ylim: Sequence | None = None, figname: str | None = None,
show: bool = True, ax=None, **kwargs)

Post-AIMD analysis of rdf and plotting.

Parameters

– rs (numpy.ndarray) – Radial distribution grid points

– rdfs (numpy.ndarray) – Radial distribution function

– ele1 – Center element

– ele2 – Adjacent elements

– xlim – x-axis range, default to None, i.e., set automatically

– ylim – y-axis range, default to None, i.e., automatically set

– figname – Image name, default to None, meaning no image is saved

– show – Whether to display the image, default to True

– ax (matplotlib.axes.Axes) – Axis for plotting, default is None, which means creating
a new axis

– **kwargs (dict) – Other parameters, such as line width, color, etc., are passed to plt.plot
function

Return type
Image after RDF analysis

Examples

>>> from dspawpy.analysis.aimdtools import get_rs_rdfs, plot_rdf

First obtain the rs and rdfs data as the x and y axis data

>>> rs, rdfs = get_rs_rdfs('dspawpy_proj/dspawpy_tests/inputs/2.18/aimd.h5', 'H
↪→', 'O', rmax=6)
Calculating RDF...

Passing x and y data to the plot_rdf function to plot

>>> plot_rdf(rs, rdfs, 'H','O', xlim=[0, 6], ylim=[0, 0.015],figname='dspawpy_
↪→proj/dspawpy_tests/outputs/doctest/RDF.png', show=False)
==> ...RDF.png

dspawpy.analysis.aimdtools.plot_rmsd(lagtime, result, xlim: Sequence | None = None, ylim:
Sequence | None = None, figname: str | None = None, show:
bool = True, ax=None, **kwargs)

Post-AIMD analysis of RMSD and plotting

Parameters

– lagtime – Time series

– result – Root mean square deviation sequence

– xlim – x-axis range

– ylim – y-axis range

8.10. aimd molecular dynamics simulation data processing 259

DS-PAW Manual

– figname – Image save path

– show – Whether to display the image

– ax (matplotlib.axes._subplots.AxesSubplot) – If plotting subplots, pass the sub-
plot object

– **kwargs (dict) – Parameters passed to plt.plot

Return type
Image of RMSD analysis of structures

Examples

>>> from dspawpy.analysis.aimdtools import get_lagtime_rmsd, plot_rmsd

timestep represents the time step length

>>> lagtime, rmsd = get_lagtime_rmsd(datafile='dspawpy_proj/dspawpy_tests/
↪→inputs/2.18/aimd.h5', timestep=0.1)
Calculating RMSD...
>>> lagtime, rmsd = get_lagtime_rmsd(datafile='dspawpy_proj/dspawpy_tests/
↪→inputs/2.18/aimd.json', timestep=0.1)
Calculating RMSD...

Saving directly as RMSD.png image

>>> plot_rmsd(lagtime, rmsd, xlim=[0,200], ylim=[0, 30],figname='dspawpy_proj/
↪→dspawpy_tests/outputs/doctest/RMSD.png', show=False)
==> ...RMSD.png
...

• For manual data extraction and processing, refer to:

1 from dspawpy.io.read import get_sinfo
2 from dspawpy.io.structure import read
3

4

5 aimd_h5_files = ['aimd1.h5','aimd2.h5','aimd3.h5'] # Extract and merge data␣
↪→sequentially from multiple completed aimd.h5 files

6

7 # Read data from multiple aimd.h5 files at once and create a list of pymatgen␣
↪→Structures

8 pymatgen_structures = read(datafile=aimd_h5_files)
9

10 # Or extract the arrays
11 for i, df in enumerate(aimd_h5_files): # Get data from each aimd.h5 file␣

↪→sequentially
12 Nstep, elements, positions, lattices, D_mag_fix = get_sinfo(df)

Warning

If you connect to a remote server via SSH and execute the above script, and you encounter QT-related error
messages, its possible that the program youre using (such as MobaXterm) is incompatible with the QT libraries. Ei-

260 8. Auxiliary Tool User Guide

DS-PAW Manual

ther change the program (for example, VSCode or the systems built-in terminal command line), or add the following
code, starting on the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.11 Ferroelectric Polarization Data Processing
For a quick start, take the series of scf.h5 files obtained from ferroelectric calculations on the HfO2 system as an

example:

• See 11Ferri.py:

1 # coding:utf-8
2 from dspawpy.plot import plot_polarization_figure
3

4 plot_polarization_figure(
5 directory="dspawpy_proj/dspawpy_tests/inputs/2.20", # Path for iron␣

↪→polarization calculation
6 repetition=2, # Number of times to repeat the data points when plotting
7 figname="dspawpy_proj/dspawpy_tests/outputs/us/11pol.png", # Output␣

↪→polarization figure filename
8 show=False, # Whether to display the polarization figure
9) # --> pol.png

Executing the code will generate the following combined figure:

8.11. Ferroelectric Polarization Data Processing 261

DS-PAW Manual

The ferroelectric polarization values for the head and tail configurations can be found below:

1 from dspawpy.plot import plot_polarization_figure
2

3 python
4 plot_polarization_figure(directory='.', annotation=True, annotation_style=1) #␣

↪→Displays the ferroelectric polarization values for the initial and final␣
↪→configurations.

The code will generate the following combined plot:

262 8. Auxiliary Tool User Guide

DS-PAW Manual

Alternatively, a second annotation style can be used:

1 from dspawpy.plot import plot_polarization_figure
2

3 plot_polarization_figure(directory='.', annotation=True, annotation_style=2) #␣
↪→Displays the ferroelectric polarization values for the initial and final␣
↪→configurations.

The code will generate the following combined plot:

8.11. Ferroelectric Polarization Data Processing 263

DS-PAW Manual

API: plot_polarization_figure()

• The plot_polarization_figure function is responsible for plotting the ferroelectric polarization figure:

dspawpy.plot.plot_polarization_figure(directory: str, repetition: int = 2, annotation: bool = False,
annotation_style: int = 1, show: bool = True, figname: str =
'pol.png', raw: bool = False)

Plot the polarization results of the iron electrode

Parameters

– directory – Main directory for the iron polarization calculation task

– repetition – Number of times to repeat drawing along the upper (or lower) direction,
default 2

– annotation – Whether to display the polarization values of the iron electrodes at the
beginning and end configurations, displayed by default

– show – Interactive display of the image, default True

– figname – Image save path, default pol.png

– raw – Whether to save the raw data to a CSV file

Returns
axes – Can be passed to other functions for further processing

Return type
matplotlib.axes._subplots.AxesSubplot

264 8. Auxiliary Tool User Guide

DS-PAW Manual

Examples

>>> from dspawpy.plot import plot_polarization_figure
>>> result = plot_polarization_figure(directory='dspawpy_proj/dspawpy_tests/
↪→inputs/2.20', figname='dspawpy_proj/dspawpy_tests/outputs/doctest/pol1.png',␣
↪→show=False, annotation=True, annotation_style=1)
>>> result = plot_polarization_figure(directory='dspawpy_proj/dspawpy_tests/
↪→inputs/2.20', figname='dspawpy_proj/dspawpy_tests/outputs/doctest/pol2.png',␣
↪→show=False, annotation=True, annotation_style=2)

Warning

If you encounter QT-related error messages when executing the above script via SSH connection to a remote
server, it may be due to incompatibility between the program used (e.g., MobaXterm) and the QT library. Either
change the program (e.g., VSCode or the systems built-in terminal command line), or add the following code starting
from the second line of your Python script:

import matplotlib
matplotlib.use('agg')

8.12 Zero-Point Vibrational Energy Data Processing
Taking the frequency.txt file obtained from a quick start CO system frequency calculation as an example, the

zero-point vibrational energy is calculated based on the following formula:

ZPE =

3N∑
i=1

hνi
2

where νi are the normal mode frequencies, h is Plancks constant (6.626× 10−34J · s), and N is the number of atoms.

• See 12getZPE.py:

1 # coding:utf-8
2 from dspawpy.io.utils import getZPE
3

4 # Import the frequency.txt file obtained from frequency calculation
5 getZPE(
6 fretxt="dspawpy_proj/dspawpy_tests/inputs/2.13/frequency.txt",
7)

The code execution results will be saved to the ZPE.dat file, and the file content is as follows:

Data read from D:\quickstart\2.13\frequency.txt
Frequency (meV)
284.840038

--> Zero-point energy, ZPE (eV): 0.142420019

8.12. Zero-Point Vibrational Energy Data Processing 265

DS-PAW Manual

API: getZPE()

• The getZPE function is responsible for calculating the zero-point vibrational energy:

Some functions are extracted from [ase](https://wiki.fysik.dtu.dk/ase/index.html).

dspawpy.io.utils.getZPE(fretxt: str = 'frequency.txt')
Read data from fretxt, calculate ZPE

The results will also be saved to ZPE_TS.dat.

Parameters
fretxt – Path to the file recording frequency information, default to frequency.txt in the
current path

Returns
Zero-point energy

Return type
ZPE

Examples

>>> from dspawpy.io.utils import getZPE
>>> ZPE=getZPE(fretxt='dspawpy_proj/dspawpy_tests/inputs/2.13/frequency.txt')
--> Zero-point energy, ZPE (eV): 0.1424200165

8.13 TS Hot Calibration Energy

8.13.1 Contribution of the entropy change of the adsorbate to the energy
Calculation is based on the following formula:

∆Sads

(
0 → T, P 0

)
= Svib =

3N∑
i=1

[
NAhνi

T
(
ehνi/kBT − 1

) −R ln
(
1− e−hνi/kBT

)]

Here, ∆Sads represents the entropy change of the adsorbate, calculated based on the harmonic approximation. Svib

represents the vibrational entropy. νi is the normal mode frequency, NA is Avogadros constant (6.022× 1023mol−1),
h is Plancks constant (6.626 × 10−34J · s), kB is the Boltzmann constant (1.38 × 10−23J ·K−1), R is the ideal gas
constant (8.314J ·mol−1 ·K−1), and T is the system temperature in units of K.

• See 13getTSads.py for reference:

1 # coding:utf-8
2 from dspawpy.io.utils import getTSads
3

4 # Import the frequency.txt file calculated from frequency, temperature can be␣
↪→modified arbitrarily

5 getTSads(
6 fretxt="dspawpy_proj/dspawpy_tests/inputs/2.13/frequency.txt",
7 T=298.15,
8)

The execution result will be saved to the TS.dat file, with the following content:

266 8. Auxiliary Tool User Guide

https://wiki.fysik.dtu.dk/ase/index.html

DS-PAW Manual

Data read from D:\quickstart\2.13\frequency.txt
Frequency (THz)
68.873994

--> Entropy contribution, T*S (eV): 4.7566990201851275e-06

8.13.2 Ideal gas entropy contribution to energy
Calculations are based on the following formula:

S(T, P) = S (T, P ◦)− kB ln
P

P ◦

= Strans + Srot + Selec + Svib − kB ln
P

P ◦

Where:

Strans = kB

{
ln

[(
2πMkBT

h2

)3/2
kBT

P ◦

]
+

5

2

}

Srot =


0 , monatomic
kB

[
ln
(

8π2IkBT
σh2

)
+ 1

]
, linear

kB

{
ln

[√
πIAIBIC

σ

(
8π2kBT

h2

)3/2
]
+ 3

2

}
, nonlinear

Selec = kB ln[2× (total spin) + 1]

Svib = kB

vib DOF∑
i

[
ϵi

kBT
(
eϵi/kBT − 1

) − ln
(
1− e−ϵi/kBT

)]
where IA to IC are the three principal moments of inertia for a non-linear molecule, I is the degenerate moment of
inertia for a linear molecule, and σ is the symmetry number of the molecule. Furthermore, monatomic refers to a
monatomic molecule, linear refers to a linear molecule, and nonlinear refers to a non-linear molecule. total spin is the
total spin quantum number. vib DOF represents vibrational degrees of freedom.

• Refer to the 13getTSgas.py script for processing:

1 # coding:utf-8
2 from dspawpy.io.utils import getTSgas
3

4 # Read elements and coordinates from the calculation result file (json or h5)
5 TSgas = getTSgas(
6 fretxt="dspawpy_proj/dspawpy_tests/inputs/2.13/frequency.txt",
7 datafile="dspawpy_proj/dspawpy_tests/inputs/2.13/frequency.h5",
8 potentialenergy=-0.0,
9 geometry="linear",

10 symmetrynumber=1,
11 spin=1,
12 temperature=298.15,
13 pressure=101325.0,
14)
15 print("Entropy contribution, T*S (eV)", TSgas)
16

17 # If only the frequency.txt file is available, the calculation can be completed by␣
(continues on next page)

8.13. TS Hot Calibration Energy 267

DS-PAW Manual

(continued from previous page)

↪→manually specifying the elements and coordinates
18 # TSgas = getTSgas(fretxt='dspawpy_proj/dspawpy_tests/inputs/2.13/frequency.txt',␣

↪→datafile=None, potentialenergy=-0.0, elements=['H', 'H'], geometry='linear',␣
↪→positions=[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0]], symmetrynumber=1, spin=1,␣
↪→temperature=298.15, pressure=101325.0)

API: getTSads(), getTSgas()

• The getTSads function is responsible for calculating the contribution of adsorbate entropy change to the energy:

Some functions are extracted from [ase](https://wiki.fysik.dtu.dk/ase/index.html).

dspawpy.io.utils.getTSads(fretxt: str = 'frequency.txt', T: float = 298.15)
Read data from fretxt, calculate ZPE and TS

Will also save the results to TSads.dat

Parameters

– fretxt – Path to the file recording frequency information, default frequency.txt in the
current path

– T – Temperature, unit K, default 298.15

Returns
Entropy correction

Return type
TS

Examples

>>> from dspawpy.io.utils import getTSads
>>> TSads=getTSads(fretxt='dspawpy_proj/dspawpy_tests/inputs/2.13/frequency.txt
↪→', T=298.15)
--> T*S (eV): 4.7566997225177686e-06

• The getTSgas function is responsible for calculating the contribution of ideal gas entropy change to energy:

Some functions are extracted from [ase](https://wiki.fysik.dtu.dk/ase/index.html).

dspawpy.io.utils.getTSgas(fretxt='frequency.txt', datafile='.', potentialenergy: float = 0.0,
elements=None, geometry='linear', positions=None, symmetrynumber=1,
spin=1, temperature=298.15, pressure: float = 101325, verbose: bool =
False)

Energy contribution to entropy under the ideal gas approximation

Parameters

– fretxt – Path to the file recording frequency information, default is frequency.txt in the
current path

– datafile – Path to the JSON or h5 file or folder containing them, default to the current
path; If set to None, the elements and positions parameters must be provided

– potentialenergy – Potential energy, unit eV

– elements – List of elements, if

– geometry – Molecular geometry, monatomic, linear, nonlinear

268 8. Auxiliary Tool User Guide

https://wiki.fysik.dtu.dk/ase/index.html
https://wiki.fysik.dtu.dk/ase/index.html

DS-PAW Manual

– positions – Atomic coordinates, unit Angstrom

– symmetrynumber – Symmetry number

– spin – Spin number

– temperature – Temperature, unit K

– pressure – Pressure, unit Pa

Returns
Under the ideal gas approximation, calculates the energy contribution to entropy, in units of
eV

Return type
TSgas

Examples

>>> from dspawpy.io.utils import getTSgas
>>> TSgas=getTSgas(fretxt='dspawpy_proj/dspawpy_tests/inputs/2.13/frequency.txt
↪→', datafile='dspawpy_proj/dspawpy_tests/inputs/2.13/frequency.h5',␣
↪→potentialenergy=-0.0, geometry='linear', symmetrynumber=1, spin=1,␣
↪→temperature=298.15, pressure=101325.0)
--> T*S (eV): 0.8515317035550232

8.14 Appendix
• Quickly download all scripts by clicking UserScripts.zip

• dspawpy Changelog

8.14. Appendix 269

https://pypi.org/project/dspawpy/

DS-PAW Manual

270 8. Auxiliary Tool User Guide

9

Frequently Asked Questions (FAQ)

9.1 Common License Error Messages
• Error message: Error code: -10, Get License File Error

• Error details: License file not found or insufficient permissions to open it.

• Error message: Error code: -20, Get License Product Error

• Error details: Failed to get product information

• Error message: Error code: -30, Check Local Environment Error

• Error details: Local hardware information verification error

• Error message: Error code: -40, Check Install Path Error

• Error details: Local install path verification error

• Error Message: Error code: -50, Check Validate White User Error

• Error details: Whitelist validation error, the current user is not in the whitelist.

• Error message: Error code: -60, Check Device Studio license Error

• Error Details: Incorrect DS product information

• Error message: Error code: -70, Check Device Studio license Error

271

DS-PAW Manual

• Error details: DS is not able to use the DS-PAW software from the product catalog

• Error message: Error code: -80, Check Device Studio license Error

• Error details: DS-PAWs current version in DS license is higher than the registered version

• Error message: Error code: -90, Check Device Studio license Error

• Error Details: DS-PAW in the DS license has expired. Registration validity

9.2 Inputcheck: Common Error Messages for Input Files
• Error message: Parameters task error

• Error details: Incorrect task parameter name or parameter setting

• Error Message: Parameters Check error

• Error Details: Parameter Name Error

• Error Message: Parameters type error

• Error details: Parameter type setting error

• Error Details: Parameters data error

• Error details: Issue with optional parameter value settings

• Error message: Parameters size error

• Error details: Issue with parameter size dimensions

• Error message: Parameters range error

• Error details: Parameter range error

• Error message: Structure key error

• Error details: Missing key in structure file

• Error message: Structure type error

• Error details: Keyword settings are incorrect in the structure file

• Error message: Structure size error

• Error details: Incorrect data size in the structure file

272 9. Frequently Asked Questions (FAQ)

DS-PAW Manual

9.3 Common Error Messages During Calculation
• Error Codes: E1015/E1011/E1012/E1014/E1005

• Error Details: Error reading K-points

• Solution: Increase the k-point density in all directions (try increasing by about 20%, but do not increase the
k-points corresponding to the vacuum direction) or modify cal.smearing and cal.sigma, e.g., set cal.smearing =
1, cal.sigma = 0.05

• Error code: E1188

• Error details: More than 4 k-points are required when using the tetrahedron method

• Solution: Increase the k-point density in each direction (try increasing by about 20%, no need to increase k-
points in the vacuum direction) or modify cal.smearing and cal.sigma, e.g., set cal.smearing = 1, cal.sigma =
0.05

• Error code: E1005

• Error details: k-point shift read error

• Solution: Try using cal.ksampling= G

• Error Message: E1013

• Error Details: K-point path read error

• Solution: Try using cal.ksampling= G

• Error Message: E1022

• Error details: Error occurred when reading eigenvalues from wave.bin

• Solution: Adjust the input parameters of the two calculations to obtain the correct wave.bin

• Error message: E1024

• Error details: The grid size generated by the current calculation is inconsistent with that read from rho.bin

• Solution: Adjust the input parameters for both calculations to obtain the correct rho.bin

• Error Message: E1042/E1041

• Error details: ZBRENT algorithm encountered an error while searching for the root function

• Solution: Read the structure from the log file before the error, generate a new structure file, then increase the
convergence accuracy with scf.convergence to continue the calculation; or modify the relaxation algorithm to
relax.methods = QN and recalculate

• Error message: E1063

• Error details: An error occurred when executing the LAPACKE_zhegv_work function while using the davidson
block method

9.3. Common Error Messages During Calculation 273

DS-PAW Manual

• Solution: Adjust cal.methods

• Error message: E1064

• Error Details: An error occurred during the LAPACKE_zhegv_work function execution during diagonalization

• Solution: Adjust cal.methods

• Error message: E1073

• Error details: Error occurred during parallel acceleration

• Solution: Disable the -pob command in the submission script and resubmit the job.

• Error Message: E1115

• Error details: Lattice volume is zero

• Error message: E1186

• Error details: An error occurred while inverting the rotation matrix

• Solution: Turn off symmetry sys.symmetry = false

• Error Message: E1187

• Error details: Error occurred while inverting the rotation matrix

• Solution: Try using cal.ksamping= MP

• Error message: E1226

• Error Details: Error occurred during expansion

• Solution: Check and modify the structure file

• Error message: E1248

• Error Details: An error occurred in the LAPACKE_zpotrf_work function during the orthogonalization of the
wave function.

• Solution: Set sys.symmetry = false and reduce relax.stepRange

• Error message: E1249

• Error details: An error occurred in the LAPACKE _ztrtri _work function during the orthogonalization of wave
functions.

• Error message: E2024/E2025

• Error details: An error occurred when inverting the rotation matrix

274 9. Frequently Asked Questions (FAQ)

DS-PAW Manual

• Solution: Improve the accuracy of symmetry judgment, such as setting sys.symmetryAccuracy = 1.0e-6

• Error message: E3058

• Error Details: Pseudopotential reading error

• Solution: DS-PAW currently provides 72 element pseudopotentials and does not support calculations with ele-
ments outside of the pseudopotential library; if the calculation system contains custom element names, you need
to copy the corresponding files from the pseudopotential library to the calculation directory and rename them

• Error Message: E4001

• Error Details: Mismatch between the number of initial projection orbitals and Wannier functions in the Wannier
calculation

• Solution: Adjust the number of initial projection orbitals in the structure.as file, or modify the parameter wan-
nier.functions in the input.in file to make the two numbers consistent.

• Error message: E4024

• Error Details: Incorrect freezing window settings for Wannier calculation

• Solution: The number of bands within the frozen window must not exceed the number of Wannier functions.
Reduce the frozen window.

• Error message: Failed to converge the scf calculation

• Error message: Electronic steps did not converge within the set number of steps.

• Solution: Try modifying the algorithm to cal.methods = 1, or increase cal.totalBands.

9.4 Version FAQs
` 1. Compatibility Issues between DS-PAW and Device Studio: `

• Why cant the band structure and phonon spectra generated by DS-PAW 2023A be opened in Device Studio?

DS-PAW 2023A changed Band to BandEnergies in output files to better reflect the physical meaning of the
data, based on user suggestions. Compatibility has been implemented in the updated Device Studio 2022B-2.0.6
version. Alternatively, you can rename BandEnergies back to Band in the output file to allow it to be opened in
versions of Device Studio prior to 2022B-2.0.6.

• Why cant the NEB data generated by DS-PAW 2023A be opened in DS?

DS-PAW 2023A has adjusted the output files based on user suggestions. This includes unifying labels in
neb0N.json/neb0N.h5 and neb.json/neb.h5, and adjusting the data structure to make the physical meaning of
the data clearer. To ensure compatibility with the current version of Device Studio, we provide several neb
processing scripts to meet various needs. For example, the neb_visualize.py script can be used to view any
structure during the neb optimization process, convert the final neb configuration into an xyz trajectory file. The
neb_check_results.py script can print the energy and force tables for each configuration in the NEB calculation,
plot the energy barrier, and plot the energy and force convergence graphs for each image. For detailed usage
instructions, please refer to the transition state data processing section in Auxiliary Tool User Guide. The 2023A
version of Device Studio has been updated for compatibility. Please update Device Studio if you are unable to
open the files.

9.4. Version FAQs 275

DS-PAW Manual

2. Why is hybrid functional calculation no longer supported for task=band in DS-PAW 2023A?

Due to the special nature of hybrid functionals, the actual calculation process for band structure calculations
using task=band and io.band=true is identical. To avoid user confusion regarding the difference between the
two, we no longer support hybrid functional calculations with task=band (non-self-consistent calculations).

9.5 Manual Related Issues
1. EPUB and MOBI ebooks display formatting errors, images appear out of place, and navigation links are incorrect.

This is likely a rendering issue with your reader. On Windows, try using Calibre or Sigil; on iOS, use the built-in
Books app.

2. Math formulas not rendered in web browsers

This is likely a network issue; please wait patiently for rendering to complete.

276 9. Frequently Asked Questions (FAQ)

10

Release Notes

10.1 2025A

10.1.1 Pseudopotential Update
LDA and PBE pseudopotentials for elements of periods 4-6 (K Ca Sc Ti V Fe Co Ni Cu Zn Ga Ge As Se Br Sr Y

Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Hf Ta W Re Os Ir Pt Au Hg Pb Bi Po) have been updated to version 1.1,
improving computational accuracy and lowering the cutoff energy.

10.1.2 Functional Improvements
1. Optimized memory consumption during pcharge calculation

2. Comprehensive code optimization significantly improves computation speed.

10.2 Release Notes for Version 2023A

10.2.1 New Features
1. Support for constant potential method in SCF calculations

2. Implicit solvent model is supported.

3. AIMD calculations now include a Langevin thermostat (barostat), adding support for NPT/NPH ensembles;
aimd.thermostat=none is renamed to SA (simulated annealing).

4. Support for fitting and band interpolation calculations with Maximally Localized Wannier Functions (MLWF).

10.2.2 Pseudopotential Updates
LDA and PBE pseudopotentials for the first three periods (H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S,

Cl, Ar) are released in version 1.1, improving computational accuracy and reducing the cutoff energy.

277

DS-PAW Manual

10.2.3 IO Tuning
1. Added HDF5 format files as the default output file format for DS-PAW, and the JSON format output files will no

longer be maintained.

2. Modified the output for the DS-PAW.log parameters.

3. Remove tmp folder

10.2.4 Feature Optimization
1. Added Pulay option for scf.mixType

2. Added atom and shape options to relax.freedom

3. Added the relax.pressure parameter.

4. Added parameters related to FFT grid: cal.FFTGrid, cal.supGrid

5. Added support for the cal.opticalGrid parameter when io.optical=true.

6. Added support for alternative writing styles in band.kpointsNumber

7. Added the corr.dftuForm parameter to determine the DFT+U method type.

8. Added support for exchange-correlation functionals compatible with semi-empirical VDW corrections.

Updated 2023A 2024/04/03

1. Supplement the output of the wave function derivative with respect to k during optical calculations.

10.2.4.1 Feature optimization

1. Added sys.spinDiff parameter to restrict the difference in the number of spin-up and spin-down electrons.

2. Added corr.coreEnergy parameter to control whether core electron energy levels are calculated.

3. Fixed a bug where the mag parameter was read incorrectly in some cases.

10.2.5 Updated on 2024/03/15 (2023A)
10.2.5.1 Feature Optimization

1. Fixed the issue where single-atom calculations of H, using PWSP pseudopotentials, resulted in errors.

2. Optimized the HSE calculation code to avoid Intel errors.

10.2.6 2023A Updated on 2024/01/12
10.2.6.1 IO adjustments

1. Added Fermi level information to rho.bin.

a. When task=dos/band, the Fermi level can be directly read from rho.bin without reading from sys-
tem.json; (This version is compatible with older versions of rho.bin that do not contain EFermi, but
the older version of DS-PAW cannot read the rho.bin output by this version)

b. Added parameter band.EfShift, which controls whether to read EFermi from rho.bin when task=band
is used.

2. Supplement the ##PARAMETERS## section of DS-PAW.log with io.band and io.dos output.

278 10. Release Notes

DS-PAW Manual

3. Added band information output to DS-PAW.log

10.2.6.2 Feature optimization

1. Fixed an issue where the partial results were incorrect when task=pcharge;

2. Added parameter scf.timeStep to adjust the convergence of electronic steps when cal.methods is set to 4 or 5.

3. Added parameter task=optical.

a. Renamed the parameter cal.opticalGrid to optical.grid

b. Added parameters optical.KKEta, optical.smearing, optical.sigma, optical.Emax

10.2.7 2023A Updated on 2023/10/07
10.2.7.1 IO adjustments

1. Fixed an issue where a warning would be incorrectly output when sys.functional was not defined in the input file
when sys.hybrid = true.

2. Fixed an issue where the number of FinalStep outputs did not match the number of step-XX outputs when
task=aimd/relax.

10.2.7.2 Feature optimization

1. Optimized the acoustic calculation module to strictly adhere to the acoustic sum rule.

2. Fix the issue of abnormal forces in the complex density functional task=relax.

10.2.8 2023A Updated on 2023/6/21
10.2.8.1 IO Adjustment

1. Add force-related outputs in neb0X.h5 during NEB calculations.

2. Change E2095 error to warning and add relevant explanations

3. Adjust the output format for task=wannier

4. Increase the number of significant digits for reading and writing sys.fixedP-related data and parameter passing.

10.2.8.2 Feature Optimization

1. Optimized the band.unfolding algorithm to reduce the probability of memory crashes.

2. In the FixedPotential iteration, precision control is implemented for the output .input.json file to prevent redun-
dant calculations in some cases.

3. Fixed data format issues in some .txt output files, preventing data output stacking.

10.2.9 2023A Update: May 9, 2023
10.2.9.1 I/O Adjustments

1. Adjusted output information related to task=neb, sys.hybrid=true, and scf.mixType=Broyden.

2. Fixed the error where HeatCapacity output was null when task=phonon and phonon.thermal=true.

10.2. Release Notes for Version 2023A 279

DS-PAW Manual

10.2.9.2 Feature Enhancements

1. Added fixed lattice and atom position information to latestStructure.as; fixed a bug related to incorrect mag
information output.

2. Adjusted the io.magProject default value to true when sys.spin is set to collinear/non-collinear.

3. Fixed an issue with incorrect reading of mag-related information from relax.json/relax.h5 during continued cal-
culations.

10.3 Function Summary

280 10. Release Notes

DS-PAW Manual

10.4 Release History

10.4.1 2022A
10.4.1.1 New Features

1. Support for revPBE/PBEsol/RPBE exchange-correlation functionals

2. Supports vdW functionals: vdW-optPBE, vdW-optB88, vdW-optB86b, vdW-DF, vdW-DF2, and vdW-revDF2

3. Supports simulation of external electric field effects

4. Supports NEB calculations with variable lattice systems (solid state NEB, ssNEB)

5. Supports calculation of ferroelectric polarization using modern polarization theory

6. Support band unfolding functionality

7. Support calculation of Helmholtz free energy/constant volume heat capacity/entropy using force constant matrix

8. Support calculation of phonon band with long-range Coulomb interaction considered

9. Support calculation of dielectric tensors using the linear response method

10. Support calculation of piezoelectric tensors using the linear response method

11. Support calculation of Born effective charges using the linear response method

12. Support Bader charge analysis

13. Support constraining lattice degrees of freedom along specified dimensions during structure optimization.

10.4.1.2 Feature Optimization

1. Supported .paw (Hongzhiwei PAW pseudopotential format) / .potcar (VASP POTCAR pseudopotential format)
/ .pawpsp (GBRV PAW pseudopotential format)

2. Added a preconditioned conjugate gradient method in the self-consistent iteration algorithm.

3. Added a fast inertial relaxation method in NEB relaxation.

4. Added a convergence criterion option for energy convergence in structure relaxation and NEB calculations.

5. Added support for modifying the Alpha and Omega coefficients in hybrid functionals, and accelerated hybrid
functional calculations using the Adaptively Compressed Exchange Operator.

6. Added projected magnetic moment information, maximum force during structure relaxation, maximum force
during transition state search, and band gap information in the output file.

7. Added a temporary calculation folder paw_tmp within the calculation directory to store intermediate files and
error messages.

10.4.2 2021B
10.4.2.1 New Features

1. Support for CI-NEB method for transition state search

2. Supports hybrid functionals PBE0, HSE03, and HSE06.

3. Support DFT-D2 and DFT-D3 van der Waals corrections

10.4. Release History 281

DS-PAW Manual

4. Supports calculation of dielectric constant, refractive index, reflectivity, absorption coefficient, extinction coef-
ficient, and more

5. Support calculations for charged systems.

6. Support spin-orbit coupling

7. Support phonon band structure and density of states calculations using the finite displacement method.

8. Support phonon band structure and density of states calculations using the DFPT method

9. Support DFT+U for strongly correlated systems

10. Support first-principles molecular dynamics calculations

10.4.3 2021beta
10.4.3.1 New Features

1. Using a plane-wave basis set to expand the wavefunctions

2. Using the Projector Augmented-Wave (PAW) method for pseudopotentials

3. Structure relaxation calculations, supporting atomic position relaxation, lattice relaxation, and lattice and atomic
position relaxation

4. Self-consistent field (SCF) calculations

5. Support non-spin-polarized, collinear spin-polarized, non-collinear spin-polarized, and spin-orbit coupling sys-
tems

6. Total energy calculation

7. Atomic force calculation

8. Stress calculation

9. Band structure (projected band structure) calculation

10. Electronic density of states (projected density of states) calculation

11. Electron Localization Function (ELF) calculation

12. Potential calculation, supporting electrostatic potential and local potential calculations

282 10. Release Notes

